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What is Target Tracking?

Different Impressions Obtained from the Literature:
I A control systems problem to point an antenna towards an

object of interest.
I The prediction of the future state of a dynamical system based

on measurements and models.
I The act of connecting a vehicle’s consecutive positions over

time.
I A problem that was solved by Rudolph E. Kálmán in 1960.

3 / 245



U.S.  Naval  Research  Laboratory

What is Target Tracking?

Target Tracking Can Encompass:
1. Determining how many objects of interest are present given

true/spurious measurements and missed detections.
I Example measurements: Signal amplitude, range, angles, and

range rate of detections, raw I and Q antenna outputs, time
delay of arrival, received signal strength...

2. Creating a statistical representation of the state (position,
velocity, dynamic model, etc.) of each object from
measurements.

3. Quantifying the confidence in the target state.
4. Determining which measurements are from an object of

interest.
5. Predicting what the object of interest might look like or do in

the future.
6. Quantifying the confidence in predictions.
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What is Target Tracking?

Target Tracking Is:
I An aid to reduce the workload of radar operators.
I A process of finding objects of interest where humans couldn’t

discern them.
I An optional part of a radar/sonar system.
I An indispensable part of a radar system.
I A critical part of a missile control system or of a

counter-missile system.
I A trivial connecting of the dots.
I Something that people can do better than the computer.
I Something that the computed can do better than people.
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discern them.
I An optional part of a radar/sonar system.
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I A critical part of a missile control system or of a

counter-missile system.
I A trivial connecting of the dots.
I Something that people can do better than the computer.
I Something that the computed can do better than people.

The difficulty and utility of target tracking
methods depend on the application.

5 / 245



U.S.  Naval  Research  Laboratory

Target Tracking Vs. Automatic
Target Tracking

I Before cheap, powerful computers:
I Tracks plotted on a map by hand.

I Automatic target tracking: The computer...
I Connects the dots.
I Smooths the estimates.
I Determines how many things are present.
I Estimates properties that can’t be plotted on a map.

I The term “automatic target tracking”: Generally only used in
old literature.
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Resources

I Getting started can be difficult.
I No comprehensive textbooks on tracking exist.
I Some useful books:

I (Bar-Shalom, Li, and Kribarajan): Estimation with
Applications to Tracking and Navigation: Theory Algorithms
and Software

I (Crassidis, Junkins) Optimal Estimation of Dynamic Systems
I (Bar-Shalom, Willett, Tian) Tracking and Data Fusion: A

Handbook of Algorithms
I (Blackman, Popoli) Design and Analysis of Modern Tracking

Systems
I (Maybeck) Stochastic Models, Estimation, and Control
I (Stone, Streit, Corwin, Bell) Bayesian Multiple Target Tracking
I (Challa, Moreland, Mušicki, Evans) Fundamentals of Object

Tracking
I (Mahler) Statistical Multisource-Multitarget Information

Fusion
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Resources

I The International Conference on Information Fusion by the
International Society of Information Fusion (ISIF) is the most
relevant to target tracking, especially networked/multistatic
tracking.

I ISIF http://www.isif.org
I Fusion 2018, Cambridge England: http://fusion2018.org

Fusion 2019, Ottawa Canada.
I The Tracker Component Library (TCL) offers over 1,000 free,

commented Matlab routines related to Tracking, Coordinate
Systems, Mathematics, Statistics, Combinatorics, Astronomy,
etc.

I https://github.com/USNavalResearchLaboratory/
TrackerComponentLibrary

I Description of library given in
D. F. Crouse, “The Tracker Component Library: Free Routines for Rapid Prototyping,”
IEEE Aerospace and Electronic Systems Magazine, vol. 32, no. 5, pp. 18-27, May. 2017.
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Some Applications of Target
Tracking

I Air traffic control.
I Satellite and debris collision avoidance.
I Analysis of particulate motion in particle accelerators.
I Analysis of the motion and interaction of bacteria.
I Range bin alignment and other aspects of ISAR for continual

imaging of moving objects.
I Maritime domain awareness.
I Missile guidance and defense.
I Situational awareness for autonomous drone swarms.

10 / 245



U.S.  Naval  Research  Laboratory

Overview

1. Mathematical Preliminaries

2. Coordinate Systems

3. Measurements and Noise

4. Measurement Conversion

5. Bayes’ Theorem and the Linear Kalman Filter Update

6. Stochastic Calculus and Linear Dynamic Models

7. The Linear Kalman Filter Prediction

8. Linear Initial State Estimation and the Information Filter

9. Nonlinear Measurement Updates

10. Square Root Filters

11. Direct Filtering Versus Measurement Conversion

12. Data Association

13. Integrated and Cascaded Logic Trackers

14. Dealing with Beams

15. Summary
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Mathematical Preliminaries

Useful Mathematical Tools
1. Univariate and Multivariate Taylor Series Expansions
2. Useful Probability Distributions.
3. Cubature Integration.
4. The Cramér-Rao Lower Bound
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Taylor Series Expansions

I In Calculus II, one typically learns about Taylor and Maclaurin
series expansions of continuous scalar functions:

f(x) =

∞∑

n=0

f (n)(a)

n!
(x− a)n (1)

f (n)(a) ,
df(x)

dxn

∣∣∣∣
x=a

(2)

I a 6= is a Taylor series.
I a = 0 is a Maclaurin series.

I Algorithms using multivariate Taylor series expansions often
arise in tracking as alternatives to cubature techniques.
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Taylor Series Expansions

I Arbitrary-order multivariate Taylor series expansions are very
seldom given in textbooks.

I Consider a function of a dx-dimensional variable x:

F (t) ,f(a + th) (3)

h ,x− a (4)

I Note f(a) = F (0) and f(x) = F (1)
I The scalar Taylor series expansion of (3) at x = 1 is

F (1) =

∞∑

n=0

F (n)(0)

n!
(5)

where the chain rules gives

F (k)(t) =

dx∑

i1=1

. . .

dx∑

ik=1

(
∂
∑k
j=1 ij

∏k
j=1 ∂xij

)
f(a + th)

k∏

j=1

hij (6)
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Taylor Series Expansions

I After appropriate substitutions, one gets the full multivariate
Taylor series expansion

f(x) =

∞∑

n=0

1

n!

dx∑

i1=1

. . .

dx∑

ik=1

(
∂
∑k
j=1 ij

∏k
j=1 ∂xij

)
f(a)

k∏

j=1

(
xij − aij

)
(7)

I If f is a vector function, then just replace f with the vector
notation f .

I A first-order expansion of a vector function f can be written

f(x) ≈ f(a) +
(
∇xf(a)′

)′
(x− a) (8)

I Generally, only first and second order expansions are used in
tracking applications.

I In the TCL, an arbitrary order multivariate polynomial for a
Taylor series expansion can be obtained with the
taylorSeriesPoly function.
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Probability Distributions

I The four most prevalent probability distributions in target
tracking tend to be:
1. The Multivariate Gaussian Distribution.
2. The Central Chi-Square Distribution.
3. The Binomial Distribution.
4. The Poisson Distribution.

I In the TCL, functions relating to these and many other
distributions are given in “Mathematical
Functions/Statistics/Distributions.”

I For the above distributions, see GaussianD, ChiSquareD,
BinomialD, and PoissonD in the TCL.
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Probability Distributions:
Gaussian

I Multivariate Gaussian distributions arise a lot: N{x;µ,Σ}:

N{z; ẑ,R} = |2πR|− 1
2 e−

1
2

(z−ẑ)′R−1(z−ẑ). (9)

I Parameterized by mean vector µ and covariance matrix Σ.
I Maximum entropy (most pessimistic) distribution when given

only µ and Σ.
I Assuming noise is due to many small random contributions, a

justification for the Gaussian approximation is from the central
limit theorem.
(The sum of N independent and identically distributed random variables
approaches a Gaussian distribution as N gets large).

I Noise in measurement domain typically approximated Gaussian.
I Arises in certain areas with stochastic dynamic models.
I Is a conjugate prior distribution.
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Probability Distributions:
Gaussian

x

f(x)

−1.5 −1 −0.5 0.5 1 1.5
0

0.1

0.3

0.3

0.4

0.5

0.6

(a) Univariate (b) Bivariate

I In (a), the Gaussian has mean 0 and variance σ2 = 1
2 .

I In (b), the Gaussian has mean 0 and covariance matrix

Σ =

[
2 1/2

1/2 1

]
(10)
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Probability Distributions:
Chi-Squared

I The Mahalanobis distance of a sample x̂ is

DM (x̂) , (x̂− µ)′Σ−1 (x̂− µ) (11)

I The Mahalanobis is dimensionless:
I Can compare states having different units (e.g. position and

velocity).

I The Mahalanobis distance shall be shown to arise in gating
and is a part of the score function for data association.

I The Mahalanobis distance is used in assessing covariance
realism via the normalized estimation error squared (NEES).

I If x̂ is drawn from a dx-dimensional Gaussian with mean µ
and covariance matrix Σ, then DM (x̂) is distributed central
chi squared with dx degrees of freedom, often written χ2(dx).
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Probability Distributions:
Chi-Squared

x

f(x)

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

I The central chi-squared distribution with k degrees of freedom
is

χ2(x, dx) =
x
k
2
−1e−

x
2

2
k
2 Γ
(
k
2

) (12)

where Γ is the gamma function.
I Plotted is χ2(x, 3).
I Confidence regions of a desired % are easily determined using

Gaussian approximations, Mahalanobis distances, and
chi-squared statistics.
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Probability Distributions:
Chi-Squared

I Given a Gaussian PDF estimate of a target, a point x, is
within the first pth-percentile if

(x̂− µ)′Σ−1 (x̂− µ) < γp (13)

where γp depends on p and on dx, the dimensionality of x.

Confidence Region p
dx 0.9 0.99 0.999 0.9999 0.99999
1 2.7055 6.6349 10.8276 15.1367 19.5114
2 4.6052 9.2103 13.8155 18.4207 23.0259
3 6.2514 11.3449 16.2662 21.1075 25.9017
6 10.6446 16.8119 22.4577 27.8563 33.1071
9 14.6837 21.6660 27.8772 33.7199 39.3407

Values of γp for p and dx.

I Use ChiSquareD.invCDF in the TCL to determine γp.
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Probability Distributions:
Chi-Squared

t1

t2

t3

t4m1
m2

m3

m4

m6
m5

m7

m8

I Uncertainty regions are ellipses/ellipsoids.
I This type of test can be used for gating:

I Gating: Eliminating targets/measurements for consideration
for association to other targets/measurements.

I Gating reduces computational complexity of measurement
assignment.

I Above example: t for targets (with confidence ellipses) and m
for measurements.
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Probability Distributions:
Chi-Squared

I The chi-squared distribution plays a role in assessing
covariance consistency.

I The covariance is consistent if it realistically models the error.
I The Normalized Estimation Error Squared (NEES) is the

simplest of multiple methods for assessing consistency.

NEES ,
1

Ndx

N∑

i=1

(x̂i − xi) P−1
i (x̂i − xi) (14)

I x̂i and Pi are estimated mean and covariance from ith
random trial.

I xi true value from ith random trial.
I If estimator is unbiased, covariance is always correct and errors

truly Gaussian, then the NEES is 1
Ndx

time a central
chi-squared random variable with Ndx degrees of freedom.

I The function calcNEES in the TCL can be useful.
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Probability Distributions:
Chi-Squared

I The chi-squared test for covariance consistency with a
confidence of p:

I Is the NEES above the p/2 probability value of the chi-squared
CDF?

I Is the NEES below the upper p/2 probability value of the
chi-squared CDF?

I If so, then the covariance is consistent to p percent.

I Covariance consistency very important for data fusion,
association, measurement filtering, and detecting errors in
signal processing chain.

I In general, the NEES should be close to 1.
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Probability Distributions:
Binomial

I Consider constant false alarm rate (CFAR) detector with a
given PFA per cell, such as the ones given by the CACFAR or
OSCFAR functions in the TCL.

I Grid of N cells (e.g. in range and range-rate).
I Probability of n false alarms is binomially distributed.

Pr{n} =

(
N

n

)
PnFA (1− PFA)N−n (15)

with mean
λ̃ = NPFA (16)

I The binomial distribution is almost never used in trackers.
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Probability Distributions:
Binomial

I We fix the mean λ̃ and vary N , which means that PFA must
change:

PFA =
λ̃

N
(17)

I The probability of n false alarms becomes

Pr{n} =

(
N

n

)
λ̃

Nn

(
1− λ̃

N

)N−n
(18)

I What is lim
N→∞

Pr{n}?
I First note that

lim
N→∞

(
N

n

)
λ̃

Nn
= lim

N→∞
Nn +O(Nn−1)

n!

λ̃n

Nn
=
λ̃n

n!
(19)

I This leaves the term lim
N→∞

(
1− λ̃

N

)N−n
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Probability Distributions:
Binomial

I Rewrite the remaining term as

lim
N→∞

(
1− λ̃

N

)N−n
= lim
N→∞

(
1− λ̃

N

)N (
1− λ̃

N

)−n
(20)

I It can be seen that

lim
N→∞

(
1− λ̃

N

)−n
= 1 (21)

I The other term is written as a Taylor series expansion:

lim
N→∞

(
1− λ̃

N

)N
= lim
N→∞

∞∑
k=0

(−1)k
λ̃k
∏k−1
j=0 (N − j)
k!Nk

(22)

= lim
N→∞

∞∑
k=0

(−1)k
λ̃k(Nk +O(Nk−1)

k!Nk
=

∞∑
k=0

(−1)k
λ̃k

k!
= e−λ̃ (23)

I The final simplification is because the series is the Taylor series
expansion of e−λ̃.
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Probability Distributions:
Poisson

I The distribution resulting from holding λ̃ constant and taking
N →∞ is thus Poisson:

Pr{n} = e−λ̃
λ̃n

n!
(24)

I Typically one splits λ̃ = λV .
I λ is a false alarm density and V is a volume.

I For a range-range rate map, volume units might be m2/s2.

I Formulation of likelihood functions for target-measurement
association simpler using Poisson approximation.

I Given λ, common likelihood formulations do not need to know
V .
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Probability Distributions:
Poisson

Example:

x

Pr{x}

1 3 5 7 9
0.05

0.1

0.15

0.2

0.25
Binomial
Poisson

(a) N=10

x

Pr{x}

1 3 5 7 9
0.05

0.1

0.15

0.2

0.25
Binomial
Poisson

(b) N=50

I Both plots, λ̃ = 5 for both distributions.
I At N = 1000, the binomial and Poisson plots look the same.
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Cubature Integration

I Many integrals cannot be solved analytically with a finite
number of terms.

I Try to evaluate a Fresnel integral:

C(z) =

∫ z

0

cos

(
πt2

2

)
dt (25)

I Quadrature integration is a technique for efficient numerical
evaluation of univariate integrals.

I Cubature integration is multivariate quadrature integration.
I The TCL has many functions related to cubature integration

in “Mathematical Functions/Numerical Integration” and
“Mathematical Functions/Numerical Integration/Cubature
Points.”
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Cubature Integration: Why?

Numerically integrate the function from 0 to 2.

x

f(x)

1 2
0

0.25

0.5

0.75

1

I Evaluate ∫ 2

0
f(x) dx =? (26)
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Cubature Integration: Why?

Numerically integrate the function from 0 to 2.

x

f(x)

1 2
0

0.25

0.5

0.75

1

I Basic calculus solution: A Riemann sum:
∫ 2

0
f(x) dx ≈

N−1∑

k=0

f (k∆x) ∆x where 2 = N∆x. (27)
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Cubature Integration: Why?

I Riemann sums converge very slowly.
I Finite precision errors for small ∆x add up fast.
I Very inefficient in multiple dimensions.
I Not always practicable for:

I Infinite integrals.
I Integrals over weird shapes, such as a 4D hypersphere.

I Cubature integration produces exact solutions in some
instances.

I Matlab’s integral function uses adaptive quadrature.
I One can do much better than Matlab’s function for certain

classes of integrals.
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Cubature Integration: Theory

I The idea in quadrature/cubature is the relation

∫

x∈S
f(x)w(x) dx =

N∑

i=0

ωif(xi), (28)

is exact for a particular weighting function w for all
polynomials f up to a certain order and approximate for other
functions f .

I S is a region, such as Rn or the surface of a hypersphere.
I Unlike a Riemann sum, N is finite.
I Cubature weights ωi and points xi depend on w and the order.

I Efficient: For a fifth-order integral with a multivariate Gaussian
weighting function, one can choose points such that N = 12.
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Cubature Integration: Theory

I In 1D, quadrature points can be systematically found.
I Let w(x) be a weight function and p1(x), p2(x), . . . a sequence

of polynomials orthonormal to w(x):

∫ b

a
w(x)pm(x)pn(x) dx =

{
1 if m = n

0 otherwise
(29)

I All orthogonal polynomials can be expressed with a three-term
recurrence:

pn(x) = (anx+ bn) pn−1(x)− cnpn−1(x) (30)

with p−1(x) = 0, p0(x) = 1, an > 0, and cn > 0.
I One can often determine the pattern an, bn, cn using (29) and

(30).
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Cubature Integration: Theory

I The orthogonal polynomial pn(x) = kn
∏n
i=1(x− ti) with

kn > 0 has n distinct real roots (ti) between a and b.
I It has been proven that knowing pn:

ωn = −
(
kN+1

kN

)
1

pN+1(tn)ṗN (tn)
n = 1, 2, . . . , N (31)

and the cubature points ξn = tn, where

ṗn(t) ,
pn(x)

dx

∣∣∣∣
x=t

(32)

I Efficient methods of solving the problem utilizing matrix
decompositions of the three-term recursion coefficients exist.

I 1D quadrature points can be extended into multiple
dimensions using either a Gaussian product method, or the
method of Smolyak (linCubPoints2MultiDim in the TCL).

I Specialized methods of generating cubature points also exist.
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Cubature Integration

I For target tracking the most useful weighting function is

w(x) = N {x;µ,Σ} (33)

I Points typically tabulated for a N {0, I} distribution.
I Transform to N {x;µ,Σ} as

ξn ← µ+ Σ
1
2 ξn (34)

where Σ = Σ
1
2

(
Σ

1
2

)′
(lower-triangular Cholesky

decomposition).

I Many formulae for cubature points are given in
A. H. Stroud, Approximate Calculation of Multiple Integrals. Edgewood Cliffs, NJ: Prentice-Hall,
Inc., 1971.
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On Solving Integrals

I Many parts of target tracking involve solving difficult
multivariate integrals.

I Many algorithms fall into one of two categories:
1. Use cubature integral for the integrals.
2. Use a Taylor series expansion to turn the problem polynomial

and solvable.

I This comes up again and again.
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The CRLB

I The Cramér-Rao Lower Bound (CRLB) is a lower bound on
the variance (or covariance matrix) of an unbiased estimator.

I Under certain conditions, the CRLB states

E
{

(x−T(z)) (x−T(z))′
}
≥ J−1 (35)

I A matrix inequality refers to sorted eigenvalues.
I x is the quantity being estimated.
I T(z) is the best unbiased estimator.
I J is the Fisher information matrix.
I The expectation is taken over the conditional PDF p(z|x) if x

is deterministic.
I The Fisher information matrix has two equivalent formulations:

JB =− E
{
∇x∇′x ln (p(z|x))

}
(36)

= E
{

(∇x ln (p(z|x))) (∇x ln (p(z|x)))′
}

(37)
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Using the CRLB

I An estimator is deemed “statistically efficient” if its accuracy
achieves the CRLB.

I Most tracking problems exactly or approximately satisfy the
assumed regularity conditions.

I The CRLB is an important tool in assessing the performance
of an estimator.

I The CRLB can be used as an approximate measurement
covariance matrix.

I The square root of the trace of the position components of the
CRLB can be used as a lower bound on the position root mean
squared error (RMSE) when localizing a target.

I Many common track filters are very close to or achieve the
CRLB in simple situations.
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Using the CRLB

I If x is not deterministic, take an expected value over x when
computing the CRLB.

I Equivalent to computing the CRLB with expectations over
p(x, z) instead of p(z|x).

I In instances where the CRLB cannot be achieved, a bound
called the the Bhattacharya bound is tighter.

I In the TCL, functions related to the CRLB (and Fisher
information matrix) are in “Dynamic Estimation/Performance
Prediction” as well as computePolyMeasFIM and
directionOnlyStaticLocCRLB in “Static Estimation”, and
delayDopplerRateCRLBLFMApprox in “Mathematical
Functions/Signal Processing.”

I The proof of the multivariate CRLB is next, but is more for
reference as it is long.
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The CRLB: Long Proof

I The CRLB is derived assuming the regularity conditions:

∂

∂xi

∫

z
p(z|x) dz =

∫

z

∂

∂xi
p(z|x) dz (38)

∂

∂xi

∫

z
Ti(z)p(z|x) dz =

∫

z
Ti(z)

∂

∂xi
p(z|x) dz (39)

where Ti(z) is the unbiased estimator for the ith component
of x.

I The unbiasedness assumption of the estimator Ti(z) means
that

E {Ti(z)− xi} =

∫

z
(Ti(z)− xi) p(z|x) dz = 0 ∀i ∈ [1, dx]

(40)
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I Differentiate both sides of the unbiasedness equation (using
regularity conditions) with respect to xi:

∫

z
(Ti(z)− xi)

∂

∂xi
p(z|x) dz−

∫

z
p(z|x) dz = 0 (41)

I Noting that a PDF integrates to 1:
∫

z
(Ti(z)− xi)

∂

∂xi
p(z|x) dz = 1 (42)

I We now construct a substitution. Note that

∂

∂xi
ln (p(z|x)) =

1

p(z|x)

∂

∂xi
p(z|x) (43)

so
∂

∂xi
p(z|x) = p(z|x)

∂

∂xi
ln (p(z|x)) (44)
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The CRLB: Long Proof

I The substitution of the logarithm identity into the integral is
∫

z
(Ti(z)− xi) p(z|x)

∂

∂xi
ln (p(z|x)) dz = 1 (45)

I However, consider the following integral with xj for j 6= i:∫
z

(Ti(z)− xi) p(z|x)
∂

∂xj
ln (p(z|x)) dz =

∫
z

(Ti(z)− xi)
∂

∂xj
p(z|x) dz

(46)

=
∂

∂xj

∫
z

Ti(z)p(z|x) dz− xi
∫
z

∂

∂xj
p(z|x) dz (47)

=
∂

∂xj
xi = 0 (48)
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I Define the matrices:

Z =




T1(z)− x1

...
Tdx(z)− xdx
∂

∂x1
p(z|x)

...
∂

∂xdx
p(z|x)




,




Y1

Y2


 (49)

I The regularity conditions say that

E {Z} = 0 (50)
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I Given the regularity conditions:

Cov {Z} = E
{
ZZ′

}
= E

{[
Y1Y

′
1 Y1Y

′
2

Y2Y
′
1 Y2Y

′
2

]}
(51)

I Note that

E
{
Y1Y

′
1

}
= Cov {T(x)} (52)

E
{
Y1Y

′
2

}
=I (53)

E
{
Y2Y

′
2

}
=J (54)

where the identities with the logarithmic integrals led to (53)
and J is the Fisher information matrix as given by

J = E
{

(∇x ln (p(z|x))) (∇x ln (p(z|x)))′
}

(55)
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I Simplifying

Cov {Z} =

[
Cov {T(x)} I

I J

]
≥ 0 (56)

where the inequality represents that the matrix has to be
positive (semi-)definite.

I Use a matrix identity related to the Schur complement:
[
A B

C D

][
I 0

−D−1C

]
=

[
A−BD−1C B

0 D

]
(57)

with A = Cov {T(x)}, B = I, C = I, D = J to get Cov {Z}
as the leftmost matrix in (57).
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I The matrix multiplying that is
[

I 0

−D−1C I

]
=

[
I 0

−J−1 0

]
(58)

I It is known that the product of a positive semidefinite matrix
and a positive definite matrix is positive semidefinite, so one
can write
[
A−BD−1C B

0 D

]
=

[
Cov {T(x)} − J−1 I

0 J

]
≥ 0 (59)

I This finishes the proof that

Cov {T(x)} ≥ J−1 (60)

I The proof of the equivalence to an expectation of second
derivatives is omitted.
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The CRLB and the PCRLB

I The Posterior CRLB (PCRLB) is a recursive formulation of the
CRLB that is well suited for assessing recursive discrete-time
estimation problems.

I A full proof of the PCRLB is given in:
P. Tichavský, C. H. Muravchik, and A. Nehorai, “Posterior Cramér- Rao bounds for discrete-time
nonlinear filtering,” IEEE Transactions on Signal Processing, vol. 46, no. 5, pp. 1386-1396, May
1998.

I Here, we use the results for a system with linear dynamics and
additive noise of the form

xk =Fkxk−1 + vk (61)
zk =h(xk) + wk (62)

where vk ∼ N {0,Qk} and wk ∼ N {0,Rk}.
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The CRLB and the PCRLB

I The Fisher information matrix at time k + 1 after a
measurement update is

Jk+1 = Q−1
k −Q−1

k Fk

(
Jk + F′kQ

−1
k Fk

)−1
F′kQ

−1
k

+ E
[(
∇xk+1

hk+1(xk+1)′
)
R−1
k+1

(
∇xk+1

hk+1(xk+1)′
)′]

(63)

I The expectation is evaluated over all possible simulation
tracks, often via Monte Carlo simulation.

I The initial J0 can be set to the CRLB for the first
measurement.

I These expressions will be used later to evaluate estimator
performance.
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Coordinate Systems:
Classes of Coordinate Systems

1. Physical Coordinate Systems
I Temporal and spatial quantities linked to global physical observations.
I Examples: WGS-84, GCRS, ITRS, UTC.

2. Semi-Physical Coordinate Systems
I Physical quantities linked to convenient mathematical models.
I Examples: Latitude and longitude, geoid height, pressure altitude, UTM.

3. Purely Mathematical
I Physical coordinate systems expressed in terms of mathematical.
I Examples: Cartesian, spherical, ellipsoidal, r-u-v, polar.

4. Measurement Coordinate Systems
I Local mathematical systems linked to physical quantities.
I Systems corrupted by refraction and other physical effects.

Overview on coordinate systems given in:
D. F. Crouse, “An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for Target
Tracking,” Formal Report, Naval Research Laboratory, no. NRL/FR/5344–16-10,279, 10 Aug. 2016,
173 pages.
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Ghost Ghost

Target

I Physical coordinate systems most important when using
multiple sensors.

I Coordinate system establishment: “Sensor registration.”
I Registration is not independent of measurement coordinate

system effects.
I Poor registration/ignored measurement effects=Worse

estimates: “Ghosting” of targets.
54 / 245



U.S.  Naval  Research  Laboratory

Physical Coordinate Systems 2

Internationally highly bureaucratically standardized6
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Coordination of Space Techniques
for Geodesy and Geodynamics

IVS
International VLBI Service

for Geodesy and Astrometry

IERS
International Earth Rotation

and Reference Systems Service

IGS
International GNSS Service

IAG
International Association

of Geodesy

ILRS
International Laser
Ranging Service

IDS
International DORIS

Service

IUGG
International Union of Geodesy

and Geophysics

ICSU
International Council

for Science

IAU
International Astronomical

Union

ICSU WDS
ICSU World Data System

COSPAR
Committee on

Space Research

PSMSL
Permanent Service

for Mean Sea Level

IGFS
International Gravity

Field Service

BGI
International Gravity

Bureau

ISG
International Service

for the Geoid

ICET
International Center

for Earth Tides

IDEMS
International DEM

Service

ICGEM
International Centre

for Global Earth Models

ITRF Centre ICRS CentreConventions Centre
GGFC

Global Geophysical
Fluids Centre

RS/PC
Rapid Service/

Predictions Centre

Earth Orientation
Centre

SBO
Special Bureau for

the Oceans

SBH
Special Bureau for

Hydrology

SBA
Special Bureau for

the Atmosphere

Special Bureau for
Combinations

Association
Member Of

Has Commission Has Service Has Service Has Service

Has Service

Has Service

Established

Member
Of

Has Service Member Of

Has
Technique

Center

Has
Technique

Center

Has
Technique

Center

Has
Technique

Center

Member Of

Member Of

Member Of
Has Service Has Service

Has Service
Has Subcommission

Established

Established

Member
Scientific Union

Member
Scientific Union

Has Service

Has Centre
Has CentreHas Centre Has Centre

Has Centre

Has BureauHas Bureau Has Bureau Has Bureau

IERS Product Centres

Fig. 3. A subset of the tangled web of international organizations behind many of the standards that form the basis of terrestrial and celestial coordinate
systems. The IERS is the primary organization in internationally standardizing celestial and terrestrial coordinate systems, which are described in its conventions
[257]. The ICSU WDS is a multidisciplinary organization that supplanted the Federation of Astronomical and Geophysical Data Analysis Services (FAGS).
The ISG used to be known as the International Geoid Service (IGeS). A number of professional organizations, such as the Institute of Navigation (ION),
as well as many governmental organizations, including the NGA and the Naval Observatory in the United States, also play a role in establishing standard
coordinate systems.

either in the Cartesian location of networked sensors or in the
measurements of the sensors. That is, the algorithms do not
explicitly solve for the actual orientation of the sensor and an
initial estimate is necessary. For example, [61], [204], [324],
and [371] all use linear approximations to deal with small
errors in the range, elevation, and azimuth measurements of
multiple sensors in three dimensions. However, these algo-
rithms cannot be used for high-precision corrections if the
local vertical at each of the sensors is biased, because, as
illustrated in Fig. 2, the corrections for the bias cannot be
expressed as constant additive-or-multiplicative modifications
to the measured azimuthal angle.

The vertical bias problem is worse when considering algo-
rithms such as [1], [247], [250], [370], and [372] that try to
establish a common 2D coordinate system among multiple
sensors, as might be the case when using multiple radars
that are incapable of making elevation measurements. If the
radars are designed such that their local verticals align with
the local gravitational verticals, then the planes in which their

measurements are taken do not coincide and it is not possible
to establish a common 2D coordinate system among the radars.
Over short distances, an ad-hoc 2D coordinate system can be
established, but it will never be of high precision. On the other
hand, algorithms for aligning a 2D sensor with 3D sensors
do exist [129], [131]. Though, the nonlinear bias estimation
algorithms of [133], [189] and the linearized algorithms of
[130], [284], [321], which explicitly consider biases in the 3D
sensor orientation, all require initial orientation estimates.

In contrast, Section VIII of this report discusses how to
perform sensor registration without an initial estimate using a
gravitational and a magnetic-field estimate. It also discusses
how the estimate can be refined using star measurements.
Though the star-based orientation-estimation algorithm re-
quires an initial estimate (or a brute-force search), citations
for star-based orientation estimation with no prior information
are provided.

Whereas the majority of algorithms for sensor registration
for tracking applications focus on the use of common obser-
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8

BCRS
Barycentric Celestial

Reference System

TCB
Barycentric Coordinate Time

(Temps Coordonnée Barycentrique)

ICRS
International Celestial

Reference System

ICRF
International Celestial

Reference Frame

HCRF
Hipparcos Celestial

Reference Frame
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CCD Astrograph Catalog
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Geocentric Celestial
Reference System
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Geocentric Coordinate Time
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ITRF
International Terrestrial
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Fig. 5. The base coordinate system for tracking in the solar system is the BCRS, which is the ICRS, which has no explicit time component, with TCB
added as time. The ICRS is realized using star catalogs as the ICRF in radio wavelengths and the HCRF in optical wavelengths. Alternatively, the UCAC
can be used in place of the HCRF for more precise results. The pseudo-inertial reference frame for tracking near-Earth objects is the GCRS, which is a type
of ECI coordinate system. The GCRS is related to the BCRS by an affine transform, placing its origin at the center of the Earth and using a appropriately
relativistically scaled time scale, the TGB. The GTRS is a fixed-Earth model of which the common realization is the ITRS, whose definition is consistent with
many models of the past. The ITRS is realized through the ITRF, which is essentially the same as the current version of the WGS 84 standard, except for
the definition of the reference ellipsoid. Actual conversions between frames can be complicated and are generally performed with the aid of two intermediate
reference frames, namely, the Celestial Intermediate Reference Frame (CIRS) and the Terrestrial Intermediate Reference System (TIRS) [257], [187, Ch. 9].
ECEF coordinate systems are generally realized using a timescale other than TCG.

look as if they are placed on a faraway sphere (they are all
around). The alignment of the axes is defined with respect to
a specific date (called an epoch). The reference epoch for the
ICRS is called J2000.0, which refers to noon (1200 hours)
in terrestrial time (TT) on January 1st in the year 2000 in
the Gregorian calendar (the standard calendar used throughout
most of the world today). Terrestrial time is shortly before
noon time coordinated universal time (UTC) on that same date.

The orientation of the axes in the ICRS are nominally based
on the orientation of the mean equator and dynamical equinox
at the reference epoch. The x´ and y-axes are in the plane
of the celestial equator with the x-axis (also known as the
origin of right ascension) pointing toward the dynamical vernal
equinox at epoch.13 The z-axis is orthogonal to the plane of
the celestial equator and points in a general northerly direction.
The celestial equator is the projection of the Earth’s equator
onto the celestial sphere. The ecliptic is a circle projected on
the celestial sphere that coincides with the orbit of the Earth
around the Sun and is tilted roughly 23.4˝ from the celestial
equator along the x-axis [285, Ch. 3.53]. The ecliptic is the
same as the apparent direction of the Sun in the sky as the
Earth orbits the Sun. An equinox is when the ecliptic intersects
the celestial equator. That is, the equinox occurs when the Sun
appears to pass through these points in the sky. There are two
equinoxes each year. The vernal equinox occurs when the Sun
appears to be going from South to North in the sky. In reality,
the ecliptic is not a perfect circle and the equator of the Earth

13The symbol P, which also marks the x-axis in Fig. 4, represents the
zodiacal constellation Aries. In ancient Greek times, the vernal equinox
pointed in the direction of Aries. Nowadays, it points toward the constellation
Aquarius due to precession (Precession is discussed in detail in Appendix
E). A brief discussion on the history of the constellations and the zodiacal
precession is given in [280].
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Fig. 6. The right ascension and declination in the ICRS of the stars near
Barnard’s star (in red) over a period of 80 years based on data in the Hipparcos
catalog (Barnard’s star is catalog entry 87937). One can see that Barnard’s
star has a large proper motion (the overlapping red circles), whereas the
other stars barely move. The declination of the star is increasing as time
progresses. The plot demonstrates how not all stars are poor for use as
reference points in defining a non-rotating celestial coordinate system due
to their large motion over the years. The function iauPmsafe in the IAU’s
Standards of Fundamental Astronomy (SOFA) library were used to change the
epoch of the data. The points in red are at the epoch of the Hipparcos catalog
(1994.25 TT), and 20 Julian years (a Julian year being precisely 365.25 days)
prior and 20, 40, and 60 Julian years posterior to the epoch of the catalog.

wobbles with respect to the celestial sphere. Thus, the ICRS is
nominally defined in terms of mean values of these quantities.

As noted in [353], practical systems align their axes based
on the locations of stars, so the precise definitions of the mean
equator and dynamical equinox at epoch (which are compli-

I Most useful systems are Earth-centered Earth-fixed’ (for
aircraft) and Earth-centered inertial (ECI) (for satellites).

I BCRS/ICRS best for tracking things far from Earth
I For example, NASA and ESA’s Solar & Heliospheric

Observatory [SOHO] satellite.
I ECEF and ECI via rigorously defined physical systems.
I WGS-84 is used by the DoD and GPS.
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Terrestrial and Celestial Systems Conversions in the TCL
CIRS2GCRS CIRS2TIRS ecliptic2ICRS G2ICRS GCRS2BCRS GCRS2CIRS
GCRS2ITRS GCRS2MOD GCRS2TIRS GCRS2TOD ICRS2Ecliptic ICRS2G
ICRS2J2000F ITRS2GCRS ITRS2TEME ITRS2TIRS J2000F2ICRS MOD2GCRS
TEME2GCRS TEME2ITRS TIRS2CIRS TIRS2GCRS TIRS2ITRS TOD2GCRS

Temporal Conversions in the TCL
BesselEpoch2TDB Cal2TAI Cal2TDB Cal2TT Cal2UTC GPS2TAI

GPS2TCG GPS2TT GPS2UTC TAI2GAST TAI2GMST TAI2GPS
TAI2TCB TAI2TCG TAI2TDB TAI2TT TAI2UT1 TAI2UTC
TCB2TDB TCG2GPS TCG2TAI TCG2TT TCG2UTC TDB2BesselEpoch
TDB2TCB TDB2TT TT2BesselEpoch TT2Cal TT2GAST TT2GMST
TT2GPS TT2LAST TT2LAT TT2LMST TT2LMT TT2TAI
TT2TCB TT2TCG TT2TDB TT2UT1 TT2UTC TT2YearFrac
UT12UTC UTC2Cal UTC2DayCount UTC2GPS UTC2TAI UTC2TCB
UTC2TCG UTC2TDB UTC2TT UTC2UT1 UTC2YearFrac

Temporal Helper Functions in the TCL
numSecInYear leapSecsOnDay isLeapYear dayOfWeek4Cal

getTimeZoneInfo getTimeZoneList cumLeapSec JulDate2JulEpoch
JulEpoch2JulDate fracDayOfMonth2HourMinSec dayOfYear2MonthDay

I See functions in TCL folder “Coordinate Systems/Celestial and
Terrestrial Systems” and in “Coordinate Systems/Time”,
among others.
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Fig. 18. A grossly exaggerated representation of the deviations between the
reference ellipsoid, the geoid, and the terrain. The arrows represent the local
gravitational vertical on the reference geoid (MSL) as determined by gravity.
The elevation of a marked point on the terrain above the reference ellipsoid
is h (ellipsoidal height), which is calculated from a normal to the ellipsoid.
Similarly, the geoid undulation N is the height of a point on the geoid above
the reference ellipsoid traced out by a normal vector. On the other hand, the
orthometric height H is the height that would be measured from the point to
the geoid by following the direction gradient from the point up or down until
it intersected the geoid. If the land were not there, it is the path that an ideal
plumb line would follow. The blue arrows coming of of the geoid represent
the direction of the local vertical at those points. The distance Ñ is often very
close to N , so sometimes one approximates H « h ´ Ñ .

tude coordinates with common commercial products, one must
be aware that a number of companies base their coordinates on
a warped, incorrect map projection. The Mercator projection is
one of the most commonly used map projections because it is
conformal, meaning that angles are locally preserved, though
distances are warped. However, many common online and mo-
bile map applications use a warped Mercator projection called
the “web Mercator projection” that was invented by Google,
does not preserve angles, and on which latitude and longitude
coordinates usually do not correctly correspond to the WGS
84 ellipsoidal coordinate system. The NGA has a presentation
detailing why the web Mercator projection produces maps that
are incompatible with the WGS 84 coordinate system, causing
positional biases to be as high as 40 km in some areas [242].

Additional details and derivations related to the geometry of
ellipsoidal-Earth models are given in [270], [271], including
how parameters for the reference ellipsoid are empirically
found from measurements.

V. VERTICAL HEIGHT AND GRAVITY

A. Definitions of Height

Whereas altitudes (heights) in the IERS conventions (when
not using a Cartesian coordinate system) are defined as h with
respect to the reference ellipsoid [257, Ch. 4.2.6], the WGS 84
standard defines vertical datums with respect to the geoid. The
geoid is a surface of constant gravitational potential defining
MSL, or a local measure of MSL. An older version of the
WGS-84 standard used to make an exception when describing
the depth of the ocean [69, Pgs. xii–xiv], where local sounding
datums were suggested, but the current version suggests that
all heights be reported at ellipsoidal heights [71, Ch. 10.6].

Figure 18 illustrates the differences between ellipsoidal and
MSL (orthometric) elevations for a point on the surface of
the Earth. The geoid is a hypothetical surface of constant

Height Type Description
Absolute Altitude Distance from the center of the Earth

Height measured along the curved plumb lineOrthometric Height with respect to MSL
Altitude based on a local pressure reading and aPressure Altitude standard atmospheric model

Geoid Height The distance between the reference ellipsoid and
Geoid Undulation MSL (the geoid)
Geodetic Height
Ellipsoidal Height Height above the reference ellipsoid

Geopotential difference from surface, divided byGeopotential Height a standard acceleration magnitude g0
TABLE VI

SOME OF THE MORE COMMON HEIGHT MEASURES THAT ARISE IN TARGET
TRACKING PROBLEMS. IN MANY APPLICATIONS, ONLY APPROXIMATE
VALUES OF ORTHOMETRIC HEIGHT AND GEOPOTENTIAL HEIGHT ARE

USED.

gravitational potential42 chosen to approximately coincide with
the height of the sea surface in the absence of tides (One
possible definition of MSL. Note that multiple definitions of
MSL exist [78].). The distance between the geoid and the
reference ellipsoid measured on a vertical from the reference
ellipsoid is the geoid undulation N . The orthometric height
H of a point is the distance measured from that point to the
geoid by following the direction of gravity downward. This is
the usual definition of “height” when one describes the height
of a mountain, for example. The variable direction of gravity
is referred to as the “curvature of the plumb line.” Though
orthometric heights are defined in a manner related to how
acceleration due to gravity changes as one moves, surfaces
of constant orthometric height are not surfaces of constant
gravity or gravitational potential. The ellipsoidal height h is
approximately the sum of the orthometric and geoidal heights.

Figure 19 plots the EGM2008 geoid with magnified undula-
tions and the actual terrain according to the Earth2012 model
with altitudes magnified with respect to MSL. Based solely
upon the distance from the center of the Earth, one might
expect there to be no ocean near Europe based on the elevation
in (b). However, since the geoid is high (red) near Europe, the
level of the ocean by Europe is more distant from the center
of the Earth than the level of the ocean in the Caribbean.
Orthometric height determines how high something seems in
terms of properties such as the thinness of the air. The air on
the top of Mount Everest (the highest mountain in the world
in terms of MSL) is thin because the top of Mount Everest
is far above MSL. On the other hand, using the Earth2012
terrain data, one finds that the most distant point from the
center of the Earth is not Mount Everest, but rather is located
in the northern Andes mountain range in South America.43

This is because the Earth is roughly ellipsoidal in shape, so
points near the equator tend to be farther from the center of
the Earth.

Table VI lists a number of different definitions of
height/altitude that one might have to deal with when de-

42Contrary to what one might expect, the magnitude of acceleration due
to gravity is generally not constant on a surface of constant gravitational
potential.

43The farthest point from the Earth’s center was the topic of the final
question in the 2013 National Geographic Bee with Chimborazo in Ecuador
being the most distant peak from the Earth’s center [15].

(b) Elevation and Geoid Height

I Ellipsoidal systems (latitude, longitude and altitude) as well as
other maps (e.g. universal transverse mercator [UTM]).

I Local East-North-Up based on ideal ellipsoidal Earth.
I Elevation on maps often measured with respect to geoid, not

reference ellipsoid.
I Ellipsoid height h differs from exact (N +H) and approximate

(Ñ +H) geoid (gravitational) height.
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(a) Exaggerated Earth Geoid
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(b) Magnetic Field v.s True North

I Geoid: Theoretical surface of constant gravitational potential.
I Highest geoid height: Top of Mt. Everest (Himalayas).
I Farthest point from Earth’s center: Top of Chimborazo

(Andes).
I Magnetic coordinates considered semi-physical.
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Systems and the TCL
Map-Related Functions in the TCL

ellips2Cart.m Cart2Ellipse getENUAxes
geogHeading2uVec uVec2GeogHeading uDotEllipsoid

proj2Ellips isInRefEllipsoid uDotNumeric

Gravity-Related Cooridinate Functions in the TCL
MSL2EllipseHelmert ellips2MSLHelmert getEGMGeoidHeight

Magnetic-Related Conversions in the TCL
CartCD2ITRS.m geogHeading2Mag ITRS2CartCD

ITRS2MagneticApex ITRS2QD magHeading2Geog
spherCD2SpherITRS spherITRS2SpherCD trace2EarthMagApex

Pressure-Related Conversions in the TCL
orthoAlt4Pres presTemp4OrthoAlt

I The above functions, and others, handle semi-physical systems
in the TCL.
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Mathematical Coordinate
Systems

Common 3D Mathematical Systems: Monostatic r-u-v

x

y

z

r1

r1v

r 1
u

I Monostatic range (one-way from
receiver to the target) r1 and direction
cosines u and v (z-axis points in radar
direction)

x =r1u, (64)
y =r1v, (65)

z =r1

√
1− u2 − v2 (66)

I Direction cosines tend to work better
with stochastic models than spherical
systems.

I See Cart2Ruv, ruv2Cart and ruv2Ruv among others in the
TCL.
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Mathematical Coordinate
Systems

Common 3D Mathematical Systems: Bistatic r-u-v

x

y

z

r1

r1v

r 1
u

lTx

r2

Tx

I Bistatic range rB = r1 + r2 and
direction cosines u and v.

x =r1u, (67)
y =r1v, (68)

z =r1

√
1− u2 − v2 (69)

r1 =
r2
B −

∥∥lTx
∥∥2

2 (rB − u · lTx)
. (70)

I lTx is the transmitter location in the
receiver’s local coordinate system.

I A good system for the transmitter
separated from the receiver.

I See Cart2Ruv, ruv2Cart and ruv2Ruv among others in the
TCL.
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Mathematical Coordinate
Systems

Common Component: Range Rate

I In addition to measuring a position, velocity information is
often available as a monostatic or bistatic range rate.

Rx Tx/Rx

Bistatic
vector

Monostatic
vector

Bistatic
Ellipse

I Range rate provides a single component of a 3D velocity
vector.

I Range rate is obtained from a Doppler shift measurement.
I See getRangeRate among others in the TCL.
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Mathematical Coordinate
Systems

I With t indicating a 3X1 Cartesian position, the bistatic range
is

rB =‖t− lRx‖+ ‖t− lTx‖ (71)

I Assuming Newtonian mechanics and no atmospheric
refraction, the range rate is a straightforward derivative of
range with respect to time:

ṙB ,
∂rB
∂τ

=

(
t− lRx + (ṫ− l̇Rx)τ

)′
(ṫ− l̇Rx)

‖t− lRx + (ṫ− l̇Rx)τ‖
+

(
t− lTx + (ṫ− l̇Tx)τ

)′
(ṫ− l̇Tx)

‖t− lTx + (ṫ− l̇Tx)τ‖
(72)

ṙB |τ=0 =

(
t− lRx

‖t− lRx‖ +
t− lTx

‖t− lTx‖

)′
ṫ−

(
t− lRx

‖t− lRx‖

)′
l̇Rx −

(
t− lTx

‖t− lTx‖

)′
l̇Tx (73)
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Mathematical Coordinate
Systems

Common 3D Mathematical Systems: Spherical

x

y

z

r1

λ A
φc, a

ζ

θ
ϕ

I Multiple definitions (range, azimuth,
elevation)

x = r1 cos(λ) cos(φc) (74)
y = r1 sin(λ) cos(φc) (75)
z = r1 sin(φc) (76)

or x = r1 sin(θ) cos(ϕ) (77)
y = r1 sin(ϕ) (78)
z = r1 cos(θ) cos(ϕ) (79)

among others.

I See Cart2Sphere and spher2Cart among others in the TCL.
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Mathematical Coordinate
Systems: Rotations

z

y

zy

I Local versus global coordinate system rotations.
I Textbooks devote many pages to transformations.
I Simplified by using

S. Umeyama, “Least-squares estimation of transformation parameters between two point
patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4, pp.
376-380, Apr. 1991.

I Given two unit vectors in each system, obtain rotation matrix.
I Implemented as findTransParam in the TCL.
I Similar findRFTransParam to orient radar face with respect to

reference ellipsoid.
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Mathematical Coordinate
Systems and the TCL

Mathematical Coordinate System Functions in the TCL
bipolar2Cart Cart2Bipolar Cart2EllipsHarmon Cart2Hypersphere
Cart2Pol Cart2Ru2D Cart2Ruv Cart2Sphere

ellips2Sphere ellipsHarmon2Cart findRFTransParam findTransParam
getEllipsHarmAxes getGlobalVectors getLocalVectors hypersphere2Cart

pol2Cart polAng2U2D ru2Cart2D ruv2Cart
ruv2Ruv spher2Cart spher2Ellipse spher2Sphere

spherAng2Uv u2PolAng2D uv2SpherAng

Individual Components in the TCL
getPolAngle getRange getRangeRate getSpherAngle
getTDOA getUDirection2D getUVDirection

I Many mathematical systems available.
I Many conversions bistatic.
I Jacobians and Hessians (not shown) available for systems

commonly used in measurements.
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Measurement Coordinate
Systems
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Sunrise near Hilo Hawaii, 1 June 2013.
Standard refraction makes the sun over the
horizon (red) while physically below the
horizon (blue). Use readJPLEphem to read
ephemeris data in the TCL.

I Measurements are corrupted from geometric quantities by
physical effects: Atmospheric refraction, general relativity, etc.

I Example: “Stationary” receivers move ±15 cm during day due
to solid-Earth tides.

I The GPS literature is a good source of very detailed physical
perturbations.

I The TCL has a number of standard monostatic/bistatic
refraction corrections in “Atmospheric Models/Standard
Exponential Model.”
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Measurements and Noise

x

y

I Are these points false alarms or a possible track over time?
I Are they accurate measurements that are far apart?
I Are false alarms very unlikely or highly likely?
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Measurements and Noise

x

y

I Are these points false alarms or a possible track over time?
I These are the same points as before at a different scale.
I Measurements are inherently noisy.
I Knowledge of measurement noise level determines scale.
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Measurements and Noise

x

y

I The blue line is “connect-the-dots.” The orange line just adds
interpolation.

I The blue/orange lines are only good if the points are very
accurate.

I The green line is much more reasonable if the points are
inaccurate.

I The noise level determines the best fit.
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Measurements and Noise

I Information on measurement accuracy is important for
I Discerning false alarms from tracks.
I Estimating a target state more accurately than “connecting the

dots”.

I The noisy nature of the measurements necessitates the use of
statistics to accurately estimate a target state.

I The noise is often approximated as additive zero-mean
multivariate Gaussian in the local coordinate system of the
measurement. For a measurement ẑ the true value z is thus
distributed

N{z; ẑ,R} = |2πR|− 1
2 e−

1
2

(z−ẑ)′R−1(z−ẑ). (80)

where R is the covariance matrix of the measurement.
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Measurements and Noise:
Circular Statistics

θ

f(θ)

240◦ 300◦ 60◦ 120◦

This weight
got clipped!

I Issues with Gaussian approximations on angular quantities.
I Solutions:

I One could use circular statistics (often inconvenient).
I One could wrap the distribution (not always feasible).

I Example wrapping solution:
D. F. Crouse, “Cubature/ Unscented/ Sigma Point Kalman Filtering with Angular Measurement
Models,” in The 18th International Conference on Information Fusion, Washington, D.C., July
2015.

I The TCL has circular distributions and the wrapRange,
angCircDiff, and wrap2Sphere functions.
wrapping functions.
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Measurements and Noise:
Signal Processing

I Designers of tracking algorithms should be familiar with some
signal processing because:

I Detection algorithm designers seldom derive a covariance R
(or other statistics) for their algorithms.

I When R is given, it is often lacking cross terms (e.g. between
range and range rate) even when the waveform leads to a true
coupling.

I Range and/or range-rate ambiguity can sometimes be solved
directly in a multihypothesis tracker (MHT).

I Understanding the measurement signal processing informs
about when zero mean/Gaussian approximations beak down.
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Measurements and Noise:
Cross Correlations
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I The wideband ambiguity function for a 2MHz linearly
frequency modulated (LFM) chip lasting 20, µs

I Detections will most likely be on the ridge.
I Errors in range → errors in range rate (Doppler) along the

ridge → correlations between range and range-rate
measurement components.
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Measurements and Noise:
Directional Estimation

Limits of Common Assumptions: Directional Estimation

0 5 10 15 20 25 30

Sum-Beam SNR, dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
E

RMSE via CRLB

ML Estimator

Quasi-Mean Estimator

Amplitude-Conditioned Mean Estimator

Prony Estimator

0 5 10 15 20 25 30

Sigmal Amplitude, dB

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

O
ff

se
t 

o
f 

E
st

im
a
to

r
 M

e
a
n

 v
s.

 T
r
u

th

ML Estimator

Quasi-Mean Estimator

Amplitude-Conditioned Mean Estimator

Prony Estimator

I Rule of thumb for linear arrays: For direction cosine estimates
below 13 dB signal to noise ratio (SNR), “biases” arise,
measurement distribution decreasingly Gaussian, variance
estimators from the Cramér-Rao Lower Bound (CRLB) are
poor.
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Measurements and Noise:
Directional Estimation

I A statistically unbiased estimator of x given z is the expected
value E {x |z}.

I Suppose that one observes many independent trials z1, . . . , zn,
so n is large and the true value of x is xtrue

I One usually expects that

lim
n→∞

1

n

n∑

i=1

E {x |zi } → E {x |z1, . . . , zn } = xtrue (81)

I That is not always true.
I Counterexample:

I A linear array produces estimates of u ∈ (−1, 1).
I If the true value is at or near −1, noise will always make

E {x |zi } > −1 unless the distribution is a delta function at −1
I The mean of n→∞ numbers that are all > −1 will be > −1.
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Measurements and Noise:
Directional Estimation

I Though E {x |zi } is unbiased in the strict statistical sense, it
can be “biased” in how one expects it to function.

I Algorithms utilizing Gaussian approximations implicitly assume
that that the average of multiple independent estimates
approaches the true value.

I Directional estimates with low SNR and/or that are near the
edges of the valid estimation region violate common
approximations.

I Gaussian approximations ignoring such effects might work until
the revisit rate becomes very fast.

I Estimator’s predicted error (via covariance matrix)
approaches/ goes below magnitude of the “bias”.
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Measurements and Noise:
Directional Estimation

I Understanding the limits of the signal processing origins of
measurements allows one to choose more appropriate target
tracking methods.

I Traditional methods, such as the Kalman filter, become
unreliable.

I More sophisticated/ computationally-demanding techniques,
such as particle filters, might become necessary.
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Measurement Conversion

I Cartesian conversion of noisy measurements is sometimes
necessary.

I Gaussian measurement will be non-Gaussian in Cartesian
coordinates.

I Given the measurement function z = h(t) over the range of z
and the distribution of z is p(z) then the exact PDF of the
converted measurement is

pconv(t) = |J|−1 p(h(t)) (82)

J , (∇zt
′)
′

=
(
∇zh

−1(z)′
)′

=
(

(∇th(t)′)
′
)−1

(83)

I ∇z denotes the gradient operator. J is the Jacobian matrix.
I For example, between r − u− v and Cartesian coordinates

J =

[
∂

∂r
t,
∂

∂u
t,
∂

∂v
t

]
(84)
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Measurement Conversion
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(a) PDF in Cartesian Coordinates
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(b) Gaussian Approximation

I Example, The monostatic r-u-v to Cartesian conversion.
I PDF and Gaussian approximation in (a) and (b).

I Gaussian approximation matches first two moments.
I Offsets are with respect to mean PDF value.
I R = diag

([
10, 10−3, 10−3

])
and ztrue = [0, 0, 200× 103].
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Measurement Conversion

I For a bijective measurement function z = h(zCart),
zCart = h−1(z) and additive Gaussian noise, the true mean
ẑCart and covariance matrix RCart of a measurement zmeas
converted to Cartesian coordinates is:

E
{

h−1(z)
∣∣ zmeas

}
= ẑCart =

∫
z∈Rdz

h−1(z)N {z; zmeas,R} dz (85)

E
{(

h−1(z)− ẑCart
) (

h−1(z)− ẑCart
)′∣∣∣ zmeas

}
= RCart =∫

z∈Rdz

(
h−1(z)− ẑCart

) (
h−1(z)− ẑCart

)′N {z; zmeas,R} dz (86)

I Both integrals can be approximated using cubature integration.
I See “Coordinate Systems/Conversions with

Covariances/Cubature Conversions” and Atmospheric
Models/Standard Exponential Model/Cubature Conversions’ in
the TCL.
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Measurement Conversion
I Cubature-based measurement conversion is the most versatile.

I Cross-correlation terms are trivially taken into account by
including them in R.

I Non-additive Gaussian noise can be handled by replacing
h−1(z) with h−1(z,w).

I h could include ray-traced atmospheric refractive effects.
I An alternative approach in the literature is based on Taylor

series expansions.
I See “Coordinate Systems/Conversions with

Covariances/Taylor-Series Conversions” in the TCL.
I Given the model

ẑ = h(zCart)−w (87)
I Invert the equation

zCart = h−1 (ẑ + w) (88)

I A Taylor series expansion about w = 0 is

zCart = h−1 (ẑ) +
(
∇zh

−1 (ẑ)
′)′

w + . . . (89)
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Measurement Conversion

I Given the Taylor series expansion, some approaches in the
literature truncate it at first order and use the expected value
and covariance:

ẑCart = E
{

h−1 (ẑ) +
(
∇zh

−1 (ẑ)′
)′

w
}

=h−1 (ẑ) (90)

RCart = E
{(
∇zh

−1 (ẑ)′
)′

ww′
(
∇zh

−1 (ẑ)′
)}

(91)

I For example, for polar measurements (r̂, θ̂):

ẑCart =

[
r̂ cos(θ̂)

r̂ sin(θ̂)

]
(92)

RCart =

[
σ
2
r cos(θ̂)

2 − 2r̂σrθ cos(θ̂) sin(θ̂) + r̂
2
σ
2
θ sin(θ̂)

2
(σ

2
r − r̂

2
σ
2
θ) cos(θ̂) sin(θ̂) + r̂σrθ cos(2θ̂)

(σ
2
r − r̂

2
σ
2
θ) cos(θ̂) sin(θ̂) + r̂σrθ cos(2θ̂) σ

2
r sin(θ̂)

2
+ r̂ cos(θ̂)(r̂σ

2
θ cos(θ̂) + 2σrθ sin(θ̂))

]
(93)
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Measurement Conversion

I However, the estimate from the first-order Taylor series
approximation is biased.

I Consider polar measurements with σrθ = 0:
r̂ =r + wr (94)

θ̂ =θ + wθ (95)

E { ẑCart| r, θ} =




E { r̂| r, θ}E
{

cos(θ̂)
∣∣∣ r, θ

}

E { r̂| r, θ}E
{

sin(θ̂)
∣∣∣ r, θ

}


 (96)

I Assuming Gaussian noise,
E { r̂| r, θ} =r (97)

E
{

cos(θ̂)
∣∣∣ r, θ} =

1√
2πσ2

θ

∫ ∞
−∞

cos(θ + wθ)e
− w2

θ
2σ2
θ dwθ = e−

σ2θ
2 cos(θ) (98)

E
{

sin(θ̂)
∣∣∣ r, θ} =

1√
2πσ2

θ

∫ ∞
−∞

sin(θ + wθ)e
− w2

θ
2σ2
θ dwθ = e−

σ2θ
2 sin(θ) (99)

87 / 245



U.S.  Naval  Research  Laboratory

Measurement Conversion

I Thus, the conditional expected value of the converted

measurement is scaled by e−
σ2θ
2 :

E { ẑCart| r, θ} =


e
−σ

2
θ
2 r cos(θ)

e−
σ2θ
2 r sin(θ)


 (100)

I “Debiased” or “unbiased” Taylor-series-based exist in the

literature (Here, multiply by e
σ2θ
2 ).

I Such techniques attempt to compute better covariance
matrices by accounting for noise in the otherwise constant r̂, θ̂
terms in the Taylor series expansion.

I Some methods use a second order Taylor series expansion.
I Taylor expansion-based conversion methods can be

computationally simpler but less robust than cubature
techniques.
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Measurement Conversion
Example I
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50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

Round−Trip Monostatic Range [km]

N
E

E
S

 

 

Simplex UKF Points

CKF Points

CM2

4th Order UKF Points

5th Order Cubature Points

(b) NEES

I Monostatic r − u− v to Cartesian measurement conversion
with the target at u = 0 and v = sin (45◦); range varied.

I Black NEES lines are the 95% confidence region.
I R = diag([10m, 10−2, 10−2])2

I CM2 is a second-order Taylor-series expansion method, simplex
UKF=second order cubature, CKF= third-order cubature.
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Measurement Conversion
Example II
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(b) NEES

I An example of bistatic r − u− v to Cartesian measurement
conversion with the transmitter at (20 km, 20 km, 20 km) and
target and noise parameters as in monostatic case.

I The difference in algorithms is most obvious in the NEES.
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BAYES’ THEOREM AND THE LINEAR
KALMAN FILTER UPDATE
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Bayes’ Theorem

I Given a PDF p(x) representing the target state estimate at a
particular time.

I Given a measurement z and a conditional PDF of the
measurement p(z|x).

I Bayes’ theorem states that
posterior

distribution︷ ︸︸ ︷
p(x|z) =

measurement
distribution︷ ︸︸ ︷
p(z|x)

prior
distribution︷︸︸︷
p(x)

p(z)︸︷︷︸
normalizing constant

(101)

I The value p(z) is essentially a normalizing constant.

p(z) =

∫

x∈S
p(z|x)p(x) dx (102)

where S is whatever space x is in (For discrete variables, the
integral becomes a sum).
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Bayes’ Theorem: Monte Hall
Example

I Bayes’ theorem underlies all rigorous measurement update
algorithms in tracking.

I A simple example of Bayes theorem is the Monte Hall problem:

I You are given a choice of three doors. Behind one door is a car
and goats are behind the other two. You pick a door and the
host opens a different door behind which there is a goat. What
are your odds of finding a car if you stay with the originally
chosen door versus picking the other remaining door?
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Bayes’ Theorem: Monte Hall
Example

I x is the door behind which there is a car. The initial set of
probabilities p(x) for each door is uniform:

d1 d2 d3
p(x) 1/3 1/3 1/3

I Without loss of generality, assume you choose door 1. The
measurement likelihood function p(z|x) is:

x d1 d2 d3
1 0 1/2 1/2
2 0 0 1
3 0 1 0

I Without loss of generality, assume that the host opens door
number 2. Applying Bayes’ theorem one gets p(x|z) to be

d1 d2 d3
p(x|z) 1/3 0 2/3

I The best choice is to switch doors.
I Most people think it doesn’t matter. Bayes’ theorem can

outperform one’s instincts.
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Bayes’ Theorem and Joint
Distributions

I Suppose the joint distribution p(x, z) is known.
I Using the definition of conditional probability

p(x, z) = p(z|x)p(x) (103)

I This allows Bayes’ theorem to be rewritten

p(x|z) =
p(z|x)p(x)

p(z)
=
p(x, z)

p(z)
(104)
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Bayes’ Theorem and Joint
Gaussian Distirbutions

I Assume that the state x and measurement z are jointly
Gaussian.

p(x, z) = N
{

y︷︸︸︷[
x

z

]
;

ŷ︷ ︸︸ ︷[
x̂prior

ẑprior

]
,

Pyy︷ ︸︸ ︷[
Pprior Pxz

prior

Pzx
prior Pzz

prior

]}
(105)

I Using Bayes’ rule for the update one gets

p(x|z) =
p(x, z)

p(z)
(106)

=
|Pyy|− 1

2 e−
1
2

(y−ŷ)′Pyy(y−ŷ)

∣∣∣Pzz
prior

∣∣∣
− 1

2
e−

1
2

(z−ẑprior)′Pzzprior(z−ẑprior)
(107)
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Bayes’ Theorem: Linear
Gaussian Distributions

I After considerable simplification, one finds that the posterior
p(x|z) is Gaussian with mean and covariance matrix

x̂posterior =x̂prior + Pxz
prior

(
Pzz

prior
)−1

(z− ẑprior) (108)

Pposterior =Pprior −Pxz
prior

(
Pzz

prior
)−1

Pzx
prior (109)

I The joint Gaussian assumption holds for the linear Gaussian
model p(x) ∼ N {x̂prior,Pprior} and

z = Hx + w (110)

where w ∼ N {0,R}.
I The conditional measurement distribution is Gaussian
p(z|x) ∼ N {Hx,R}.

I Note that
ẑprior = E {z} = E {Hx} = Hx̂prior (111)

I It can be shown that p(z) ∼ N {ẑprior,Pzz}.
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Bayes’ Theorem: Linear
Gaussian Distributions

I The covariance terms are

Pzz
prior = E

{
(z− ẑprior)(z− ẑprior)

′}

=R + HPpriorH
′ (112)

Pxz
prior = E

{
(x− x̂prior)(z− ẑprior)

′}

=PpriorH
′ (113)

I Substituting everything back for the linear model one gets the
update step for the Kalman filter.

I Notation change for standard tracking:
I The “prior” subscript will be replaced by “k|k − 1” to indicate

that one has an estimate of a current (step k) state given prior
(step k − 1) information.

I The “posterior” subscript will be replaced by “k|k” to indicate
that one has an estimate of a current state given current
information.
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Bayes’ Theorem: Linear
Gaussian Distributions
Prior Prediction
x̂k|k−1,Pk|k−1

Measurement
zk,Rk

Measurement Prediction
ẑk|k−1 = Hkx̂k|k−1

Innovation
νk = zk − ẑk|k−1

Innovation Covariance
Pzz

k|k−1 = Rk +HkPk|k−1H′k

Cross Covariance
Pxz

k|k−1 = Pk|k−1H′k

Filter Gain

Wk = Pxz
k|k−1

(
Pzz

k|k−1

)−1

Updated Covariance
Pk|k = (I−WkHk) (I−WkHk)

′
+WkRkW

′
k

Updated State Estimate
x̂k|k = x̂k|k−1 +Wkνk

I The discrete measurement update step of the Kalman filter
with common notation/terminology.

I The updated covariance estimate has been reformulated in
Joseph’s form for numerical stability.

I See KalmanUpdate in “Dynamic Estimation/Measurement
Update” in the TCL.
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Bayes’ Theorem: Joseph’s
Form

I One would expect the covariance update to be

Pk|k = Pk|k−1 −Wk

(
Pxz
k|k−1

)′
(114)

I However, finite precision errors can possibly cause the Pk|k to
have a negative eigenvalue even if Pk|k−1 is positive definite.

I The subtraction is the problem.
I Solution: Replace the subtraction with a quadratic expression.
I The quadratic expression

Pk|k = (I−WkHk) (I−WkHk)
′ + WkRkW

′
k (115)

is algebraically equivalent to (114) and does not suffer a risk of
negative eigenvalues.
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Bayes’ Theorem: Why Use
Approximations?

I The Kalman filter update is optimal for measurements that are
linear combinations of the target state.

I One approach to handling nonlinear measurements (i.e.
anything from a radar) for a Cartesian state is the previously
discusses measurement conversion and Gaussian
approximation.

I However, why not just apply Bayes’ theorem more precisely?
I Bayes’ theorem is again:

p(x|z) =
p(z|x)p(x)

p(z)
(116)

I Just multiply two known functions and normalize the result.

I Bayes’ theorem is trivial. Why not always do it optimally?
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Bayes’ Theorem: Why Use
Approximations?

I The Gaussian distribution is a conjugate prior distribution to
itself.

I If p(x) is Gaussian and p(z|x) is Gaussian, then p(x|z) must
be Gaussian.

I See “Mathematical Functions/Statistics/Conjugate Prior
Updates.”

I Some other examples of conjugate prior distributions are:
x p(x) p(z|x)

λ Poisson gamma
PFA binomial beta
σ2 scalar normal inverse gamma
Σ multivariate normal inverse Wishart

I If the measurement distribution is not conjugate to the prior
distribution, the result of Bayes’ rule will be increasingly
complicated.

I Not suitable for recursive estimation.
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Bayes’ Theorem: Why Use
Approximations?

I Bayes’ theorem is just normalized multiplication. Why not just
discretize space and do everything almost optimally on a grid?

I Simplest “optimal” Bayesian filter:
1. Discretize the entire estimation space
2. Evaluate probabilities on a discrete grid for given distributions
3. Multiply matrices of probabilities to get posterior; normalize

I It is simple.
I With parallelization over GPUs, couldn’t it be done quickly?
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Bayes’ Theorem: Why Use
Approximations?

I Why the brute-force grid approach is seldom done:
I One target 3D position and velocity in 50 km cube all directions about

sensor, speed in any direction to Mach 4 (1372,m/s), discretized to 5m
and 1m/s.

I Grid for single probability density function (PDF) is more than 2× 1022

in size (we need two).
I As floating doubles, one grid requires more than 82 zettabytes of RAM

(1 ZB=1 trillion GB).
I 64GB RAM stick ≈ $255 so cost ≈ $330 trillion ($660 trillion for two

grids, US GDP ≈ $53 trillion).
I Computing power to multiply two grids in 1ms is ≈ 20 exaflops.
I Most powerful supercomputer (Tianhe-2, China) 33.85 petaflops. We

need 612 of them.
I A smarter approach would be to use some type of adaptive grid or set of

points.
I This is the basis of particle filters (to be discussed later).

I The Kalman filter is much faster than the most efficient particle filter.
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Bayes’ Theorem: Can’t it
Always be Linear?

I Why not always make the state in the local coordinate system
of the receiver?

I For example, [r, u, v, ṙ, u̇, v̇] instead of position and velocity.
I The linear Kalman filter measurement update is optimal for

additive Gaussian measurement noise.
I This approach is widely used in the open literature for missile

control systems.
I The use of range rate becomes much simpler.
I Drawbacks:

I There is no common “local” coordinate system for multiple
sensors/multiple measurement types. E.g. monostatic plus
bistatic measurements.

I Non-maneuvering targets follow curved trajectories in local
coordinates.

I Nonlinear dynamic models are more difficult to handle than
nonlinear measurements.
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Bayes’ Theorem: Can’t it
Always be Linear?

I Consider a 2D position vector r in a polar coordinate system:

ur =

[
cos(θ)

sin(θ)

]
uθ =

∂ur
∂θ

=

[
− sin(θ)

cos(θ)

]
(117)

r =rur (118)
I Note that

u̇r =
∂ur
∂θ

θ̇ = θ̇uθ u̇θ =− θ̇ur (119)

I The velocity is
ṙ =ṙur + ru̇r = ṙur + rθ̇uθ (120)

I Thus, the acceleration is
r̈ =r̈ur + ṙu̇r + ṙθ̇uθ + rθ̈uθ + rθ̇u̇θ =

(
r̈ − rθ̇2

)
︸ ︷︷ ︸

ar

ur +
(
rθ̈ + 2ṙθ̇

)
︸ ︷︷ ︸

aθ

uθ (121)

I For constant ar = 0 and aθ = 0, one gets the nonlinear
dynamic model:

r̈ =rθ̇2 θ̈ =− 2ṙθ̇

r
(122)
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Bayes’ Theorem: Can’t it
Always be Linear?

r

θ
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0

20

40

(a) Cartesian Coordinates

r

θ

18 27 36 45

−90◦

0◦

90◦

180◦

(b) Polar Coordinates

I Consider a 2D constant Cartesian velocity dynamic model
(ar = aθ = 0).

I Constant velocity motion in Cartesian coordinates on the left.
I The same motion in 2D polar coordinates on the right.
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Bayes’ Theorem: Can’t it
Always be Linear?

I Similar nonlinearities arise for linear motion translated to other
coordinate systems. See “Dynamic Models/Continuous
Time/Non-Cartesian Position” in the TCL.

I For range and a single direction cosine:

r̈ =
ruu̇2

1− u2
(123)

ü =
2ṙu̇

r
− uu̇2

1− u2
(124)

I In 3D spherical coordinates:
r̈ =rφ̇2 + rθ̇2 cos(φ)2 (125)

θ̈ =
1

r

(
−2ṙθ̇ + 2rθ̇φ̇ tan(φ)

)
(126)

φ̈ =
1

r

(
−2ṙφ̇− rθ̇2 cos(φ) sin(φ)

)
(127)

I One usually chooses to have linear dynamic models and
nonlinear measurements.
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Stochastic Calculus:
Motivation

I A physicist providing a sophisticated dynamic model (ballistic/
orbital, spiraling, weaving, turning, etc), will probably initially
create a deterministic differential equation:

dxt
dt

=

What Physics
Tells You︷ ︸︸ ︷
ã(xt, t) (128)

I . . . but objects under track are not deterministic.
I Physics offers an approach: A stochastic differential equation:

dxt =

What Physics
Tells You︷ ︸︸ ︷

ã(xt, t)dt +

Unknown
Perturbations︷ ︸︸ ︷
D(xt, t)dβt (129)

I ã(xt, t) is the drift function.
I D(xt, t) is the diffusion matrix.
I dβt is the differential of a Wiener process.
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Stochastic Calculus: Details

I Instead of using the notation

dxt = ã(xt, t)dt+ D(xt, t)dβt (130)

one typically wants to write a traditional differential equation:

dxt
dt

= ã(xt, t) + D(xt, t)
dβt
dt

(131)

I For practical purposes, (130) is equivalent to (131).
I . . . but under strict mathematical definitions, dβtdt does not

exist.
I However integrals over the term are defined.
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Stochastic Calculus: Details

I The evolution of the Wiener process vector
βt = [βt(1), βt(2), . . . , βt(dw)]′ is defined as

p(βt2 − βt1) =
1√

2π(t2 − t1)
exp

[
−(βt2 − βt1)2

2(t2 − t1)

]
(132)

β0 =0 (133)
E [βt2 |βt1 ] =βt1 (134)

E [βt] =0 (135)

I This property is important for deriving explicit solutions to
certain systems.

I However, one must first define what a stochastic integral is.
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Stochastic Calculus: Details

I In Calculus II, definite integrals of real functions are often
derived related to Riemann sums:

∫ b

a
f(t)dt , lim

N→∞

N−1∑

j=0

f(τj) (tj+1 − tj) (136)

with
t0 =a tj =t0 + ∆tj ∆t =

b− a
N

(137)

I τj ∈ [tj , tj+1] and it generally does not matter where.
I The more esoteric Riemann-Stieltjes integral adds in another

function g(t) as a measure:
∫ b

a
f(t)dg(t) , lim

N→∞

N−1∑

j=0

f(τj) (g(tj+1)− g(tj)) (138)

I Again τj ∈ [tj , tj+1] and it generally does not matter where.
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Stochastic Calculus: Details

I The strict definition of the Riemann-Stieltjes integral is not
suited to measures g(t) that vary infinitely in a given interval.

I A Wiener process βt varies infinitely in a given interval, but
the definition of the integral used is similar to a
Riemann-Stieltjes integral:

∫ b

a
f(t)dβt = lim

N→∞

N−1∑

j=0

f(τj)
(
βtj+1 − βtj

)
(139)

I Unlike with Riemman and Riemann-Stieltjes integrals,
choosing different values of τj ∈ [tj , tj+1] changes the results.

I Choosing τj = tj results in Itô calculus.
I Choosing τj =

tj+1+tj
2 results in Stratonovich calculus.

I Itô calculus is simpler and is usually the only one used.
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Stochastic Calculus: Details
I Given a definition of a calculus, an integral over a stochastic

differential equation takes a form akin to a Riemann sum:

xb = lim
N→∞

N−1∑

j=0

(
ã(xτj , τj)∆

t + D
(
xτj , τj

) (
βtj+1

− βtj
))

(140)

I The integral result is random, because βtj is random.
I However, the intermediate values of xτj are required.
I One can consider the integral over an infinitesimal step:

xt+∆t = xt + ã(xτ , τ)∆t + D (xτ , τ)
(
βt+∆t − βt

)
(141)

which is akin to Euler’s method for deterministic differential
equations.

I Stochastic Runge-Kutta methods and other techniques exist
for better solutions to stochastic differential equations. See
StrongStochRungeKStep and WeakStochRungeKStep in
the TCL.
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Stochastic Calculus: Linear
Systems

I For linear systems, explicit solutions are available.
I For linear systems, Itô and Stratonovich calculus are the same.

I The calculi only differ if D(xt, t) depends on xt.

I Consider the linear difference equation:

dxt = Axtdt+ Bdβt (142)

where A and B are constant matrices.
I The integral of the stochastic differential equation from t0 to t

is

xt = xt0 +

∫ t

t0

Axτdτ +

∫ t

t0

Bdβτ (143)

where the second integral is stochastic.
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Stochastic Calculus: Linear
Systems

I Rather than directly solve the integral, we note that the
infinitesimal step

xt+∆t = xt + Axt∆
t + B

(
βt+∆t − βt

)
(144)

is Gaussian distributed if xt is deterministic of Gaussian
distributed. Thus, the solution to the entire integral is
Gaussian distributed.

I As (144) is linear, the solution to the integral must have the
form

xt = Ft−t0xt0 + v (145)

where v ∼ N {0,Qt−t0} and w is the same dimensionality as
βt.

I Ft−t0 and Qt−t0 must be determined.
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Stochastic Calculus: Linear
Systems

I A second infinitesimal step has the form

xt+2∆t =xt+∆t + Axt+∆t∆t + B
(
βt+2∆t − βt+∆t

)
(146)

=

Same as two steps for dxt
dt

= Axt︷ ︸︸ ︷
xt + 2Axt∆

t + A2xt
(
∆t
)2

+
(
I + ∆tA

)
B
(
βt+∆t − βt

)
+ B

(
βt+2∆t − βt+∆t

)
(147)

I F thus comes from integrating the non-stochastic differential
equation

dxt
dt

= Axt (148)

given xt0 .
I This differential equation is solved in the control literature.
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Stochastic Calculus: Linear
Systems

I The integral that must be solved the determine F is
∫ t

t0

Axtdt (149)

I The solution utilizes a property of the exponential function of
a matrix.

d

dt
eAt = AeAt = eAtA (150)

I The exponential of a matrix is defined as a generalization of
the Taylor series expansion of eλt:

eAt ,
∞∑

k=0

1

k!
tkAk (151)
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Stochastic Calculus: Linear
Systems

I The differential equation to solve is

ẋt = Axt (152)

I Pre and post multiply by e−At

e−Atẋt − e−AtAxt = 0 (153)

I Utilizing the property of the matrix exponential

d

dt

(
e−Atẋt

)
= 0 (154)

I Integrating from t0 to t yields

xt = eA(t−t0)xt0 (155)

so Ft−t0 = eA(t−t0).
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Stochastic Calculus: Linear
Systems

I We must determine the process noise covariance matrix Q to
finish finding the posterior distribution.

I We propose that the solution to the stochastic differential
equation dxt = Axtdt+ Bdβt is

xt = Ft

(
xt0 +

∫ t

t0

Ddβτ

)
(156)

I It can be shown that if t = t0, then xt = xt0 , satisfying the
initial conditions.

I Differentiating (156), one gets

dxt =
dFt−t0
dt

(
xt0 +

∫ t

t0

Ddβτ

)
+ Ft−t0Ddβt (157)

I The proof by induction comes from substituting (157) into
xt = x0 +

∫ t
t0
dxτdτ and simplifying to get

xt = xt0 +
∫ t
t0

Axτdτ +
∫ t
t0

Bdβτ again.
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Stochastic Calculus: Linear
Systems

I From the definition of differences of βt and the
Riemann-Stieltjes-like definition of the stochastic integral, one
knows that ∫ t

t0

dβτ ∼ N {0, (t− t0)I} (158)

I Given the proposed solution, the covariance of the prediction
can be found to be

Qt−t0 = E
{

(xt − Ft−t0xt0) (xt − Ft−t0xt0)′
∣∣xt0

}
(159)

I The integral is over matrix exponentials (Ft−t0 is a matrix
exponential). The solution is the linDynMod2Disc function in
the TCL and the algorithm is from
C. F. Van Loan, "Computing Integrals Involving the Matrix Exponential," IEEE Transactions on
Automatic Control, vol. AC-23, no. 3, pp. 395-404, Jun. 1967.

I We now have the tools to convert linear continuous-time
models to linear discrete-time models.
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Stochastic Calculus: Linear
Systems Summary

Summary
I Given a continuous-time stochastic dynamic model of the form

dxt = Axtdt+ Bdβt (160)

The value of xt predicting from time t0 to t given a known xt0
can be written as a discrete linear equation

xt = Ft−t0x0 + v (161)

where
v ∼N {0,Qt−t0} (162)

and the state transition matrix Ft−t0 and process noise
covariance matrix Qt−t0 can be found using matrix
exponentials via the linDynMod2Disc function in the TCL.
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Stochastic Calculus: Linear
Dynamic Models

The following classes of linear dynamic models shall be discussed:
1. The family of nearly constant moment models (velocity,

acceleration, jerk, etc.).
I See FPolyKal and QPolyKal in the TCL.

2. The family of correlated nearly constant moment models
(Ornstein-Uhlenbeck, Singer, etc.).

I See FGaussMarkov and QGaussMarkov in the TCL.
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Stochastic Calculus: Linear
Dynamic Models

I The nearly constant velocity model (continuous white noise
acceleration model) in 1D is

dxt︷︸︸︷[
ẋt

ẍt

]
=

A︷ ︸︸ ︷[
0 1

0 0

]
xtdt+

B︷︸︸︷[
0

q

]
dβt (163)

I Noise is only added to the velocity term.
I q is the process noise intensity. Typical units are

√
m2/s3.

I The state transition and process noise covariance matrices for
predicting T , t− t0 are

F =

[
1 T

0 1

]
Q =




1

3
T 3 1

2
T 2

1

2
T 2 T


 q2 (164)

125 / 245



U.S.  Naval  Research  Laboratory

Stochastic Calculus: Linear
Dynamic Models

I The nearly constant acceleration model in 1D is similarly

dxt =




0 1 0

0 0 1

0 0 0


xtdt+




0

0

q


 dβt (165)

I Noise is only added to the acceleration term.
I The state transition and process noise covariance matrices for

predicting T ahead are (omitting subscripts of F and Q):

F =




1 T
1

2
T 2

0 1 T

0 0 1


 Q =




1

20
T 5 1

8
T 4 1

6
T 3

1

8
T 4 1

3
T 3 1

2
T 2

1

6
T 3 1

2
T 2 T



q2 (166)
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Stochastic Calculus: Linear
Dynamic Models

I The pattern can be generalized to where the nth derivative
has the noise added:

A =





0 for n = 0 (the scalar case)[
0n,1 In,n

0 01,n

]
for n > 0

(167)

D =

[
0n,1

1

]
q (168)

I The values in row r and column c (starting from 0) of the
transition matrix and process noise covariance matrix to
predict ahead T are:

Fr,c =

 T c−r

(c− r)! if c− r ≥ 0

0 otherwise
(169)

Qr,c =
T (n−r)+(n−c)+1

(n− r)!(n− c)!((n− r) + (n− c) + 1)
q2 (170)
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Stochastic Calculus: Linear
Dynamic Models

I 1D motion models can be generalized to d dimensions as Fd

and Q|d via a Kronecker product:

Fd =




Id,dF0,0 Id,dF0,1 . . . Id,dF0,n

Id,dF1,0 Id,dF1,1 . . . Id,dF1,n

...
...

. . .
...

Id,dFn,0 Id,dFn,1 . . . Id,dFn,n




(171)

Qd =




Id,dQ0,0 Id,dQ0,1 . . . Id,dQ0,n

Id,dQ1,0 Id,dQ1,1 . . . Id,dQ1,n

...
...

. . .
...

Id,dQn,0 Id,dQn,1 . . . Id,dQn,n




(172)

where Idd is a d× d identity matrix.
I In Matlab, use Fd=kron(F,eye(d,d)).
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Stochastic Calculus: Linear
Dynamic Models

I Observed changes in velocity/acceleration, etc. of real targets
are correlated over time.

I Consider a turning airplane.
I The class of Gauss-Markov dynamic models adds a correlation

term to the highest-order moment. In 1D for an nth order
model with decorrelation time τ :

A =





−1

τ
for n = 0 (position only)




0n,1 In,n

0

[
01,n−1,−

1

τ

]

 for n > 0

(173)

D =

[
0n,1

1

]
q (174)

129 / 245



U.S.  Naval  Research  Laboratory

Stochastic Calculus: Linear
Dynamic Models

I The elements of the state transition matrix and the process
noise covariance matrix for the discretized Gauss-Markov
model are:

Fr,c =



T c−r

(c− r)! if r≤c and c<n

(−τ)n−r
(
e−

T
τ −

n−r−1∑
i=0

(
−T
τ

)i
i!

)
if c = n

0 otherwise

(175)

Qr,c =q2(−τ)2n−r−c+1
n−r−1∑
i=0

(−1)i
(

1− e−
T
τ

i∑
k=0

(
T
τ

)k
k!

)

+ q2(−τ)2n−r−c+1
n−c−1∑
i=0

(−1)i
(

1− e−
T
τ

i∑
k=0

(
T
τ

)k
k!

)

− q2 1

2
(−τ)2n−r−c+1

(
1− e−2T

τ

)
+ q2(−τ)2n−r−c

n−r−1∑
i=0

n−c−1∑
j=0

(−1)i+j
T
(
T
τ

)i+j
i!j!(i+ j + 1)

(176)
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Stochastic Calculus: Linear
Dynamic Models

I The most popular Gauss-Markov model is the Singer model,
which has n = 2 for correlated acceleration:

F =




1 T τ
2
(
T

τ
− 1 + e

−T
τ

)

0 1 τ

(
1− e−

T
τ

)

0 0 e
−T
τ




Q =



Q0,0 Q0,1 Q0,2

Q0,1 Q1,1 Q1,2

Q0,2 Q1,2 Q2,2


 (177)

Q0,0 =q
2 τ

2

6

(
2T

3 − 6τT
2
+ 6Tτ

2
(
1− 2e

−T
τ

)
+ 3τ

3
(
1− e−

2T
τ

))
(178)

Q0,1 =q
2 τ

2

2
e
− 2T
τ

(
τ + e

T
τ (T − τ)

)2
(179)

Q0,2 =q
2
τ
2
e
−T
τ

(
τ sinh

(
T

τ

)
− T

)
(180)

Q1,1 =q
2 τ

2

2

(
2T + τ

(
−3 + e

− 2T
τ

(
4e
T
τ − 1

)))
(181)

Q1,2 =q
2 τ

2

2
e
− 2T
τ

(
e
T
τ − 1

)2
(182)

Q2,2 =q
2 τ

2

(
1− e−

2T
τ

)
(183)

I The model keeps the acceleration near zero.
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Stochastic Calculus: Linear
Dynamic Models

I The Ornstein-Uhlenbeck model is a Gauss-Markov process
with n = 0.

I The model keeps the position near zero.
I The Ornstein-Uhlenbeck process tends to be used in the

literature for certain simulations where targets should not
escape.

I The equations are

F =e−
T
τ (184)

Q =q2 τ

2

(
1− e− 2T

τ

)
t) (185)
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Stochastic Calculus vs. Direct
Discrete Models

I Direct discrete-time models exist and do not require stochastic
calculus.

I One example is the discrete white-noise acceleration model. In
1D with discrete time k:

xk+1 =Fxk + Γv (186)

F =

[
1 T

0 1

]
Γ =




1

2
T 2

T


 (187)

I The term v is scalar noise with variance q2.
I The term Γ treats the noise as inputs to velocity and

acceleration terms in a simple scalar kinematic model

x = ẋT +
1

2
ẍT 2 (188)
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Stochastic Calculus: Process
Noise

I The power spectral density term q2 of the process noise is a
design parameter.

I If one typically predicts over a duration of T and the maximum
change in the highest order moment of your state (e.g.
velocity, acceleration, etc) is vMAX, a rule-of-thumb for most
discretized dynamic models is

q2 ≈
(

3
4vMAX

)2

T
(189)

I Multiple other rules of thumb exist (including for direct
discrete models) and are programmed into the
processNoiseSuggest function in the TCL.
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Stochastic Calculus vs. Direct
Discrete Models

I Though simple to derive, direct discrete models should usually
be avoided:

I Predictions are temporally inconsistent when used with varying
revisit rates T .

I This is explained in more detail when considering the Kalman
filter prediction.

I The process noise covariance matrix is singular, which can
sometimes cause issues.

I Functions for some linear direct discrete models in the TCL
include FVanKeuk. QPolyKalDirectDisc, QPolyKalDirectAlt
and QVanKeuk.
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The Linear Kalman Filter
Prediction

I The stochastic dynamic models describe prediction when the
initial state x is deterministic.

I What if the initial state is uncertain?
I Assume a Gaussian prior at discrete step k − 1 with mean

x̂k−1|k−1 and covariance matrix Pk−1|k−1.
I The goal is to predict forward to discrete step k, resulting in a

predicted distribution with mean and covariance matrix x̂k|k−1

and covariance matrix Pk|k−1.
I The discretized or discrete dynamic model

xk = Fk−1xk−1 + wk−1 (190)

where the subscript of F refers to the discrete time, not the
duration of the prediction and wk−1 ∼ N {0,Qk−1}.

I Fk−1 and Qk−1 can be for any linear model; they depend on
the prediction interval T .
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The Linear Kalman Filter
Prediction

I The dynamic models provides the conditional prediction
distribution:

p(xk|xk−1) ∼ N {Fxk−1,Qk−1} (191)

I However, xk−1 is not deterministic. The Law of Total
Probability must be used

p(xk) =

∫

xk−1∈Rdx
p(xk|xk−1)p(xk−1)dxk−1 (192)

I The prior is p(xk−1) ∼ N
{
x̂k−1|k−1,Pk−1|k−1

}
.

I The result is Gaussian with mean and covariance matrix:

x̂k|k−1 =Fk−1x̂k−1|k−1 (193)

Pk|k−1 =Qk−1 + Fk−1Pk−1|k−1F
′
k−1 (194)
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The Linear Kalman Filter
Prediction Summary

Prior Values
x̂k−1|k−1,Pk−1|k−1

State Prediction
x̂k|k−1 = Fkx̂k−1|k−1

Covariance Prediction
Pk|k−1 = Qk + FkPk|k−1F′k

I The final two equations are the prediction step of the standard
Kalman filter.

I See the discKalPred function in the TCL.
I We now have tools to approximate measurements as Gaussian,

predict states forward and update states with converted
measurements.
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Discretized Versus Direct
Discrete and the Kalman Filter

I Consider two scenarios:
I Predicting a target state forward by T using the Kalman filter

and then predicting it forward by another T .
I Predicting a target state forward by 2T .

I The results of both predictions should be the same.
I If using a discretized dynamic model, they are the same.
I If using a direct discrete model, they are not the same.
I Direct discrete models are problematic with possibly missed

detection and variable revisit rates.
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Linear Initial State Estimation

Two common approaches to starting the filter are
1. One-point initiation.

I See the functions in “Dynamic Models/One-Point
Initialization” in the TCL.

2. Using an information filter.
I See infoFilterUpdate and infoFilterDiscPred in the TCL.

142 / 245



U.S.  Naval  Research  Laboratory

Linear Initial State Estimation
I One-point initiation is the simplest approach:

I The initial state and covariance matrix are

x̂0|0 =

[
ẑCart

0dx−dz

]
(195)

P̂0|0 =

[
RCart 0dz ,dx−dz

0dx−dz ,dz diag([σ2
1 , σ

2
2 , . . . , σ

2
dx−dz ])

]
(196)

where
I dx and dz are the dimensionalities of the state and the

Cartesian-converted measurement.
I σ2

1 , . . . , σ
2
dx−dz are large variances based on the maximum

velocity, acceleration, etc of the target.
I Known position, other components “uninformative”.
I Updates and predictions can then be done using the standard

Kalman filter.
I A rule of thumb for σi is to use the maximum value of the

value of the moment divided by 2 or 3.
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Linear Initial State Estimation

I An unknown state component would have an ∞ value in the
corresponding diagonal of its covariance matrix.

I One does not want to use infinite quantities, so variants of the
information filter exist.

I Instead of estimating x̂k|k and Pk|k, one estimates P−1
k|k and

the information state

ŷk|k = P−1
k|kx̂k|k (197)

starting with an uninformative state

ŷ0|−1 =0 (198)

P0|−1 =0 (199)

I The information filter is algebraically equivalent to the Kalman
filter.
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Linear Initial State Estimation

Information State Update
ŷk|k = ŷk|k−1 +H′kR

−1
k zk

State Information Update
P−1

k|k = P−1
k|k−1

+H′kR
−1
k Hk

Information State Prediction
ŷk|k−1 = Dk−1ŷk−1|k−1

State Prediction Information Matrix
P−1

k|k−1
= Dk−1P

−1
k−1|k−1

F−1
k−1

Dk−1 =
(
F′k−1 +P−1

k−1|k−1
F−1

k−1Qk−1

)−1

Information State at Time k − 1
ŷk−1|k−1

State Information Matrix at Time k − 1

P−1
k−1|k−1

I Multiple variants of the information filter exist; one is shown
above, combining prediction and update steps.

I Once enough measurements for state observability have been
filtered, one can recover the state:

x̂k|k = Pk|kŷk|k (200)
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Nonlinear Measurement
Updates
Single Model

Estimation Algorithms
Batch

Estimation

Recursive
EstimationGaussian Filters Particle Filters

Maximum Likelihood
Algorithms

Particle Filters

Stochastic
Particle Filters

Deterministic
Particle Filters

Gaussian
Mixture Filters

No Bias
Compensation

Bias
Compensation

Consider Extended
Kalman Filter

Consider Cubature
Kalman Filter

Extended Kalman Filter
Cubature Kalman Filter
Pure Propagation Filter

Progressive Gaussian Filter

Quasi-Monte Carlo Filter

Ensemble Kalman Filter
Central Difference Kalman Filter
Divided Difference Kalman Filter

Bootstrap PF

Auxiliary PF

PF with Kalman Filter Proposal

Box PF
Instrument Variable PF

Homotopy PF

I Measurement updates are possible without Cartesian conversion.
I Major nonlinear filtering algorithms shown.
I We focus on the Extended Kalman Filter and variants of the cubature

Kalman filter (which include the “unscented” KF).
I See EKFUpdate and cubKalUpdate in the TCL.
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Nonlinear Measurement
Updates

I The Kalman filter arose from a Bayesian update given that a
linear measurement and the state are jointly Gaussian.

I Approximating a nonlinear measurement

z = h(x) + w (201)

where w is Gaussian, as jointly Gaussian with the state, one
still has the same basic update equations as the Kalman filter

x̂k|k =x̂k|k−1 + Pxz
k|k−1

(
Pzz
k|k−1

)−1 (
z− ẑk|k−1

)
(202)

P|̨k =Pk|k−1 −Pxz
k|k−1

(
Pzz
k|k−1

)−1
Pzx
k|k−1 (203)

but the quantities ẑk|k−1, Pzz
k|k−1, Pxz

k|k−1 are now integrals.
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Nonlinear Measurement
Updates

The integrals are:

ẑk|k−1 = E [h(xk) + wk] (204)

=

∫
Rdx

h(xk)N
{
xk; x̂k|k−1,Pk|k−1

}
dxk (205)

Pzz
k|k−1 = E

[(
zk − ẑk|k−1

) (
zk − ẑk|k−1

)′] (206)

= E
[(

wk+h(xk)−ẑk|k−1

)(
wk+h(xk)−ẑk|k−1

)′] (207)

=Rk +

∫
Rdx

(
h(xk)− ẑk|k−1

) (
h(xk)− ẑk|k−1

)′N{xk; x̂k|k−1,Pk|k−1

}
dxk

(208)

Pxz
k|k−1 = E

[(
xk − x̂k|k−1

) (
zk − ẑk|k−1

)′] (209)

= E
[(

xk − x̂k|k−1

)(
h(xk) + wk − ẑk|k−1

)′] (210)

=

∫
Rdx

(
xk − x̂k|k−1

) (
h(xk) + ẑk|k−1

)′N{xk; x̂k|k−1,Pk|k−1

}
dxk

(211)
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Nonlinear Measurement
Updates: CKF

Predicted Estimates
x̂k|k−1

Pk|k−1

Measurement Prediction
ẑk|k−1 =

∑Nc
i=1 ωiz̃

(i)
p

Innovation
νk = zk − ẑk|k−1

Updated State Estimate
x̂k|k = x̂k|k−1 + Wkνk

Predicted Cubature State Points

x̃(i)
p = x̂k|k−1 + P

1
2
k|k−1

ξi

Predicted Cubature Measurement Points
z̃(i)
p = h

(
x̃(i)
p

)

Filter Gain

Wk = Pxz
k|k−1

(
Pzz

k|k−1

)−1

Updated State Covariance
Pk|k =

(
X̃p −WkZ̃p

)(
X̃p −WkZ̃p

)′
+ WkRkW

′
k

Base Cubature Points and Weights
Choose dx-dimensional cubature points {ξi} and weights

{ωi}.

Centered, Predicted Cubature Point Matrix
X̃p=

[√
ω1(x̃

(1)
p −x̂k|k−1), . . . ,

√
ωNc (x̃

(Nc)
p −x̂k|k−1)

]

Centered, Predicted Cubature Measurement Point Matrix
Z̃p=

[√
ω1(z̃

(1)
p −ẑk|k−1), . . . ,

√
ωNc (z̃

(Nc)
p −ẑk|k−1)

]

Innovation Covariance
Pzz

k|k−1 = Rk + Z̃pZ̃
′
p

Cross Covariance
Pxz

k|k−1 = X̃pZ̃
′
p

Measurement
zk,Rk

I The simplest solution to the nonlinear integrals is to use
cubature integration, shown above.

I The square root is a lower-triangular Cholesky decomposition.
I The vector formulation above requires all cubature weights be

positive, but allows for Joseph’s form to be used.
I A Joseph’s formulation supporting negative cubature weights

is probably impossible.
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Nonlinear Measurement
Updates: EKF

I The Quasi Monte-Carlo Kalman filter is the same as the CKF,
but uses Monte Carlo integration for the integrals.

I An alternative approach is to use a Taylor series expansion of
the nonlinear function.

I A first-order Taylor series expansion of h(xk) about the point
x̂k|k−1 is:

h (xk) ≈ h
(
x̂k|k−1

)
+
(
∇xh

(
xk|k−1

)′)′ (
xk − x̂k|k−1

)
(212)

I The expected values are thus:

ẑk|k−1 =h
(
x̂k|k−1

)
(213)

Hk =
(
∇xh

(
xk|k−1

)′)′ (214)

Pzz
k|k−1 =Rk + HkPk|k−1H

′
k (215)

Pxz
k|k−1 =Pk|k−1H

′
k (216)
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Nonlinear Measurement
Updates: EKF

Prior Prediction
x̂k|k−1,Pk|k−1

Measurement
zk,Rk

Jacobian

Hk =
(
∇xh

(
x̂k|k−1

)′)′

Measurement Prediction
ẑk|k−1 = h

(
x̂k|k−1

)

Innovation
νk = zk − ẑk|k−1

Innovation Covariance
Pzz

k|k−1 = Rk +HkPk|k−1H′k

Cross Covariance
Pxz

k|k−1 = Pk|k−1H′k

Filter Gain

Wk = Pxz
k|k−1

(
Pzz

k|k−1

)−1

Updated Covariance
Pk|k = (I−WkHk) (I−WkHk)

′
+WkRkW

′
k

Updated State Estimate
x̂k|k = x̂k|k−1 +Wkνk

I The first-order EKF measurement update is shown above.
I A second-order variant is well known but seldom used.
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Nonlinear Measurement
Updates: EKF

I The Taylor series expansion of the EKF is about the
(unknown) true value xk.

I Iterative formulations:
I Perform an update to get an approximate x̂k|k.
I Redo the Taylor series expansion using the approximate x̂k|k

instead of x̂k|k−1.
I Redo the update using the new expansion (and the old prior

values).
I Repeat if desired.

I Benefits of second order and iterative formulations tend to be
small.

I The EKF is more likely to diverge than a CKF of an adequate
order.

153 / 245



U.S.  Naval  Research  Laboratory

Nonlinear Measurement
Updates

I In the EKF and CKF, measurements need not be
Cartesian-convertible.

I Once initiated, measurements that cannot be Cartesian
converted can often be used.

I Range rate can be used, though benefits tend to only be
during initiation and for maneuvering targets.
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Square Root Filters

I Square root filters propagate a type of square root of the
covariance matrix instead of the matrix itself.

I Square root propagation can
I Reduce finite precision errors.
I Provide a method to guarantee covariance symmetry and

positive (semi-)definiteness.
I This is a reason to prefer such techniques.

I Two main types of square root filters exist:
1. Those using a Cholesky-style decomposition.
2. Those using a LDL’ decomposition.

I We consider one form of the first type here.
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Square Root Filters

I Instead of Pk|k, Cholesky-style filters compute Sk|k such that

Pk|k = Sk|kS
′
k|k (217)

I Such filters also take SRk and SQk such that

Rk =SRk
(
SRk
)′

(218)

Qk =SQk

(
SQk

)′
(219)

I The chol command with the “lower” option can be used in
Matlab.

I If a matrix might be positive semidefinite the cholSemiDef
function in the TCL can handle it.

I The conversion to square root form just involves algebraic
manipulations.
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Square Root Filters

I Expressions for the following filters shall be given in square
root form:
1. Kalman Filter Update

I See sqrtKalmanUpdate in the TCL.
2. Kalman Filter Prediction

I See sqrtDiscKalPred in the TCL.
3. Cubature Kalman Filter Update

I See sqrtCubKalUpdate in the TCL.
4. Extended Kalman Filter Update

I See sqrtEKFUpdate in the TCL.

I Further (complicated) optimizations might be possible. See
Chapter 7 of:
P. S. Maybeck, Stochastic Models, Estimation, and Control. New York: Academic Press, 1979,
vol. 1.
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Square Root Filters: Square
Root Kalman Filter Update

Prior Prediction
x̂k|k−1,Sk|k−1

Measurement
zk,S

R
k

Measurement Prediction
ẑk|k−1 = Hkx̂k|k−1

Innovation
νk = zk − ẑk|k−1

Root Innovation Covariance
Szz
k|k−1 = Tria

([
HkSk|k−1, SR

k

])

Cross Covariance
Pxz

k|k−1 = Sk|k−1S′k|k−1H
′
k

Filter Gain
Wk =

(
Pxz

k|k−1/S
zz′
k|k−1

)
/Szz

k|k−1

Updated Square Root Covariance
Sk|k=Tria

([
(I−WkHk)Sk|k−1, WkS

R
k

])Updated State Estimate
x̂k|k = x̂k|k−1 +Wkνk

I Square root Kalman filter update.
I S = Tria(A) uses a Q-R decomposition to obtain a square

lower-triangular matrix from the rectangular matrix argument
A and can be implemented using [~,R]=qr(A’,0);S=R’; It is in
the TCL as the tria function.
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Square Root Filters: Square
Root Kalman Filter Prediction

Prior Values
x̂k−1|k−1,Sk−1|k−1

State Prediction
x̂k|k−1 = Fkx̂k−1|k−1

Root Prediction Covariance
Sk|k−1 = Tria

([
Fk−1Sk−1|k−1, SQ

k−1

])

I The discrete square root Kalman filter prediction step.
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Square Root Filters: Square
Root CKF Update

Predicted Estimates
x̂k|k−1

Sk|k−1

Measurement Prediction
ẑk|k−1 =

∑Nc
i=1 ωiz̃

(i)
p

Innovation
νk = zk − ẑk|k−1

Updated State Estimate
x̂k|k = x̂k|k−1 + Wkνk

Predicted Cubature State Points
x̃(i)
p = x̂k|k−1 + Sk|k−1ξi

Predicted Cubature Measurement Points
z̃(i)
p = h

(
x̃(i)
p

)

Filter Gain
Wk =

(
Pxz

k|k−1/S
zz′
k|k−1

)
/Szz

k|k−1

Updated Root State Covariance
Sk|k = Tria

([(
X̃p −WkZ̃p

)
, WkS

R
k

])

Base Cubature Points and Weights
Choose dx-dimensional cubature points {ξi} and weights

{ωi}

Centered, Predicted Cubature Point Matrix
X̃p=

[√
ω1(x̃

(1)
p −x̂k|k−1), . . . ,

√
ωNc (x̃

(Nc)
p −x̂k|k−1)

]

Centered, Predicted Cubature Measurement Point Matrix
Z̃p=

[√
ω1(z̃

(1)
p −ẑk|k−1), . . . ,

√
ωNc (z̃

(Nc)
p −ẑk|k−1)

]

Root Innovation Covariance
Szz

k|k−1 = Tria
([

Z̃p, SR
k

])

Cross Covariance
Pxz

k|k−1 = X̃pZ̃
′
p

Measurement
zk,S

R
k

I The square root CKF update is similar to the CKF update
utilizing Joseph’s form.
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Square Root Filters: Square
Root EKF Update

Prior Prediction
x̂k|k−1,Sk|k−1

Measurement
zk,Rk

Jacobian

Hk =
(
∇xh

(
x̂k|k−1

)′)′

Measurement Prediction
ẑk|k−1 = h

(
x̂k|k−1

)

Innovation
νk = zk − ẑk|k−1

Root Innovation Covariance
Szz
k|k−1 = Tria

([
HkSk|k−1, SR

k

])

Cross Covariance
Pxz

k|k−1 = Sk|k−1S′k|k−1H
′
k

Filter Gain
Wk =

(
Pxz

k|k−1/S
zz′
k|k−1

)
/Szz

k|k−1

Updated Square Root Covariance
Sk|k = Tria

([
(I−WkHk)Sk|k−1, WkS

R
k

])Updated State Estimate
x̂k|k = x̂k|k−1 +Wkνk

I The square root EKF update.
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Filtering Versus Measurement
Conversion

I From what has been covered, two common approaches for
basic tracking exist:
1. Cartesian converting measurements (and covariances) and

using a linear filter.
2. Directly using measurements in a nonlinear filter.

I These shall be compared in a simple example.
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Filtering Versus Measurement
Conversion

z

x
−40−202040

200

20

−20

Ship 1

Ship 2Ship 3

Ship 4

Target

I A flat Earth.
I All ships on the surface traveling
−10m/s in the negative z
direction.

I The target initially at an altitude
of 7 km going 100m/s.

I Radars on ships pointed 15◦ up
from the horizontal.

I q̃ = 0.4802m2/s3

I Measurements every T = 0.5 s.
I Tracks initialized via an

information filter with 2
converted measurements.

I R
1
2 = diag([10m, 10−2, 10−2]).
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Filtering Versus Measurement
Conversion: RMSE
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(a) Converted Measurements,
RMSE
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(b) EKF, RMSE
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(c) CKF, RMSE

I The positional RMSE error of three different tracking
algorithms. The CKF used 5th order points.

I The CKF has the best RMSE performance.

166 / 245



U.S.  Naval  Research  Laboratory

Filtering Versus Measurement
Conversion: NEES
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(a) Converted Measurements,
NEES
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(b) EKF, NEES
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(c) CKF, NEES

I The NEES of three different tracking algorithms.
I The EKF is bad; the CKF is the best over time; converted

measurements are initially the best.
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Data Association

Data Association
Algorithms Multiple ScanSingle Scan

With Integrated
Track Management

Without Integrated
Track Management

Continuity
Over Time

No Continuity
Over Time

Random Finite
Set Based
Methods

Traditional
Hypothesis-

Based Methods

PMHT MHT
Track Before

Detect

Continuity
Over Time

No Continuity
Over Time

Global Nearest Neighbor

Naïve Nearest Neighbor

JPDA

JPDA*
GNN-JPDA

CJPDA

CJPDA*

Set JPDA
JIPDA

JIPDA*
GNN-JIPDA

Labeled Multi-
Bernoulli Filter

PHD
CPHD

Track-Oriented
MHT

Hypothesis-Oriented
MHT

ML-PDAF
ML-PMHT

Hough
Transform

Dynamic
Programming

I Common algorithms for assigning measurements to targets
shown.

I We focus on non random finite set (RFS)-based single scan
approaches.
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Data Association

Topics considered are:
1. The Likelihood Function.
2. Naïve Nearest Neighbor, the Score Function, and Global

Nearest Neighbor (GNN)
3. Probabilistic Data Association (PDA) and Joint Probabilistic

Data Association (JPDA) variants
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The Likelihood Function

I Consider one known target with a Gaussian prediction x̂k|k−1,
Pk|k−1 with a 100% detection probability and with NM

measurements present.
I Which measurement should be assigned to the target?
I Single-scan data association algorithms make this decision

based only on the current state prediction x̂k|k−1, Pk|k−1.
I Multiple scan data association look at multiple sets of

measurements, which could consist of:
I Measurements from one sensor at multiple times.
I Measurements from multiple sensors at one time.
I Measurements from multiple sensors at multiple times.
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The Likelihood Function
I Let Hp be a matrix so Hpx

extracts the position
components of a Cartesian state.

I Given Cartesian-converted
measurements zCart

1 , . . . , zCart
NM

one might assign the ith one
such that

i = arg min
i

∥∥∥Hpx− zCart
i

∥∥∥
2

(220)
I This is usually bad:

I Measurements are more accurate in range than cross range.
I Cross-range becomes worse farther away from sensor, as

illustrated (monostatic).
I The shape of the uncertainty region of the state can matter.

I Target ellipse crosses multiple range cells in image.
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The Likelihood Function

I One cannot convert the state to the measurement coordinate
system and use a similar l2 norm.

I Mixing units (e.g. range, angle, and even range rate) makes no
sense.

I Valid distance measures can be derived from likelihood
functions and likelihood ratios.

I Another reason that measurement covariance matrices matter.

I Let Zk−1 be the set of all measurements up to discrete time
k − 1 and Θk−1 be the information of which measurements
are assigned to the track up to time k − 1.

I A valid cost function is the likelihood p(z|Zk−1,Θk−1).
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The Likelihood Function

I From the Law of Total Probability:

p(z|Zk−1,Θk−1) = p(z|x)p(x|Zk−1,Θk−1) (221)

I In all of the Kalman filter variants covered thus far

p(x|Zk−1,Θk−1) = N
{
x; x̂k|k−1,Pk|k−1

}
(222)

I In the linear Kalman filter, the parameters for the product
distribution have already been computed. It can be shown
that:

p(z|x)p(x|Zk−1,Θk−1) = N
{

z; ẑ,Pzz
k|k−1

}
(223)

I In the CKF and EKF, the same expression is almost always
used to approximate the likelihood.
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The Likelihood Function

I Written out, the likelihood of the ith measurement:

p(zi|Zk−1,Θk−1) ,Λ̃
(
θi
)

=
∣∣∣2πPzz,i

k|k−1

∣∣∣− 1
2
e
− 1

2 (z−ẑk|k−1)′Pzz,ik|k−1(z−ẑk|k−1) (224)

I Pzz,i
k|k−1 depends on the covariance matrix Ri of the ith

measurement.
I Taking the negative logarithm of the likelihood and dropping

the normalizing constant terms and 1/2 scale factor one has a
Mahalanobis distance:

− log
(

Λ̃
(
θi
))
∝
(
z− ẑk|k−1

)′
Pzz,i
k|k−1

(
z− ẑk|k−1

)
(225)

I From the mathematics section, we know that Mahalanobis
distances can be used for chi-squared testing to determine
whether measurements can even be considered valid.

I The exclusion of measurements from possible assignments is
gating.
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The Likelihood Function

I If one target is present and R is the same for all
measurements, the maximum likelihood (ML) assignment has
the minimum Mahalanobis distance.

I If R varies between measurements, this is not the case!
I For a counter example:

I Consider two scalar Gaussian distributions: N
{
z1; 0, σ2

1

}
and

N
{
z2; 0, σ2

2

}
.

I Choose z1 = 1, σ1 = 1, σ2
2 = e−10, z22 = 8e−10.

I One observes that

z21
σ2
1

<
z22
σ2
2

⇐⇒ 1 < 8 (226)

(
2πσ2

1

)− 1
2 e
− z21

2σ21 <
(
2πσ2

2

)− 1
2 e
− z22

2σ22 ⇐⇒ 1√
2πe

<
e√
2π

(227)

I For a predicted measurement of zero, the Mahalanobis
distance choice disagrees with the ML choice.
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The Likelihood Function

I To choose the ML measurement for assignment:
I Use the likelihood function if measurement covariance matrices

vary.
I Use the Mahalanobis distance when all measurements have the

same covariance matrix.

I The Mahalanobis distance can be used for gating regardless of
whether the accuracies vary.

I What if multiple targets are present?
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Naïve Nearest Neighbor

t1

t2

m1

m2

I For multiple targets, one is tempted to assign the highest
likelihood measurement to each target.

I In the above scenario, both targets would be assigned to
measurement m1.

I Naïve nearest neighbor leads to track coalescence and
ultimately, needless track loss.

I A practical algorithm must assign measurements jointly across
targets, accounting for missed detections.

I Naïve nearest neighbor is one of the options in
singleScanUpdate in the TCL.
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The Score Function

I We want to derive a cost function (a score function) that can
be used for multiple target assignment.

I The exponential of the score function derived here is computed
in makeStandardLRMatHyps and
makeStandardCartOnlyLRMatHyps in the TCL.

I Define
I θ as an assignment of measurements to targets at a given time.
I Z = {z1, . . . , zm} is the current set of observations.
I m is the cardinality of Z.
I Ip is all prior information.

I One can write:
Pr {θ, Ip|Z} = Pr {θ, Ip|Z,m} m adds no new information (228)

=
1

c1
p(Z|m, θ, Ip) Pr {θ, Ip|m} Bayes’ Theorem (229)

=
1

c1
p(Z|m, θ, Ip) Pr {θ|m, Ip}Pr {Ip|m} Conditional Probability (230)

179 / 245



U.S.  Naval  Research  Laboratory

The Score Function

I The final simplification is

Pr {θ, Ip|Z} =
1

c1
p(Z|m, θ, Ip) Pr {θ|m, Ip}Pr {Ip} m adds no info

(231)
I Specifications:

I The prior information Ip informs about NT targets.
I The function ξt(θ) return the observations associated with

target t under θ or the empty set ∅ if nothing is assigned.
I The function ξ̄(θ) returns all false alarms and ξ̄i(θ) the ith one.

I The PDF of the first term of Pr {θ, Ip|Z} can be written

p(Z|m, θ, Ip) = pc
(
ξ̄(θ)|m, θ, Ip

) NT∏

i=1

pt (ξt(θ)|m, θ, Ip)

(232)
I pc is a false alarm (clutter) PDF, and pt is a target PDF.
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The Score Function

I The target PDF is

pt (ξt(θ)|m, θ, Ip) =

{
1 if ξt(θ) = �

p̃t (ξt(θ)|m, θ, Ip) otherwise
(233)

where p̃t (ξt(θ)|m, θ, Ip) equals the previously developed
likelihood of a measurement assigned to a target given the
predicted state.

I If all false alarms are independent,

pc
(
ξ̄(θ)|m, θ, Ip

)
=

φ(θ)∏

i=1

pc
(
ξ̄i(θ)|m, θ, Ip

)
. (234)

where φ(θ) is the number of false alarms in hypothesis θ.
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The Score Function

I Define δ(θ) as a set of Boolean detection indicators for the
association hypothesis θ such that δt(θ) = 1 if target t was
observed.

I The PDF of the second term of Pr {θ, Ip|Z} can be written

Pr {θ|m, Ip} = Pr {θ|m, Ip, δ(θ), φ(θ)}Pr {δ(θ), φ(θ)|m, Ip}
(235)

using the Law of Total Probability.
I The first term of (235) is the probability of an association of

measurements to targets given one knows which targets have
been observed and how many measurements are present.
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The Score Function

I Without the actual measurements given and with Ip
presumably uninformative, all possibilities are equiprobable:

Pr {θ|m, Ip, δ(θ), φ(θ)} =




Choose measurements
originating from targets︷ ︸︸ ︷(

m

m− φ (θ)

)
Assign chosen measurements

to targets︷ ︸︸ ︷
(m− φ (θ))!




−1

(236)

=
φ(θ)!

m!
(237)

where it was assumed that m− φ(θ) ≥ 0, i.e. that the
hypothesis in question is valid.
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The Score Function
I Suppressing the argument (θ) in δ and φ, and letting P tD be

the detection probability of target t, the second term of
Pr {θ|m, Ip} is

Pr {δ, φ|m, Ip} = Pr {δ|m,φ, Ip}Pr {φ|m, Ip} (238)

=

(
Pr {δ

⋂
(m− φ) targets seen|φ, Ip}

Pr {(m(k)− φ) targets seen|φ, Ip}

)
·
(

Pr {m|φ, Ip}Pr{φ}
Pr{m}

)
(239)

=

( ∏NT
t=1

(
P tD
)δt (1− P tD)1−δt

Pr {(m(k)− φ) targets seen|φ, Ip}

)

·
(

Pr {(m(k)− φ) targets seen|φ, Ip}Pr{φ}
Pr{m}

)
(240)

=
Pr{φ}
Pr{m}

NT∏
t=1

(
P tD
)δt

(1− P tD)1−δt (241)

I In(240), the prior information Ip informs on P tD.
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The Score Function: P t
D

I P tD can be set as a nominal design parameter.
I Never set P t

D to 1.

I Often, P tD is approximated based on observed target
amplitudes over time.

I P tD can also be estimated by fitting to a stochastic radar cross
section model and using the radar range equation.

I The Swerling models in “Mathematical
Functions/Statistics/Detection Statistics/” in the TCL can
help determine P tD from stochastic target power models.
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The Score Function

I Combining expressions for the terms of Pr {θ|m, Ip}, one gets

Pr {θ|m, Ip} =
φ!

m!

Pr{φ}
Pr{m}

NT∏

t=1

(
P tD
)δt (1− P tD)1−δt (242)

I Substituting that and the other terms back into the expression
for Pr{θ, Ip|Z} leads to

Pr{θ, Ip|Z} =
φ! Pr{φ}

c2

φ∏

i=1

pc
(
ξ̄i|m, θ, Ip

)

·
NT∏

t=1

(
P tDpt (ξt|m, θ, Ip)

)δt (1− P tD)1−δt Pr {Ip} (243)

where missing normalization terms are in c2.
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The Score Function

I Dividing out the clutter PDF for measurements assigned to
targets:

Pr{θ, Ip|Z} =
φ! Pr{φ}

c3
Pr {Ip}

·
NT∏

t=1

(
P tD

pt (ξt|m, θ, Ip)
pc (ξt|m, θ, Ip)

)δt
(1− P tD)1−δt

(244)

I We want to get rid of the φ! Pr{φ} term.
I Assume a constant false alarm density λ over the observation

volume V , with false alarms from a Poisson process. Then

Pr{φ} = e−λ̃
λ̃φ

φ!
. (245)

with λ̃ = λV .
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The Score Function

I Substituting the false alarm model:

Pr{θ, Ip|Z} =
1

c4
Pr {Ip}

NT∏
t=1

(
P tD

pt (ξt|m, θ, Ip)
(λV )pc (ξt|m, θ, Ip)

)δt
(1− P tD)1−δt

(246)

I It is generally undesirable to have to compute the volume V .
The volume can be eliminated assuming that false alarms are
uniformly distributed in the observation region:

pc (ξt|m, θ, Ip) =
1

V
(247)
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The Score Function

I The result of a uniform false alarm model is:

Pr{θ, Ip|Z} =
1

c4
Pr {Ip}

NT∏
t=1

(
P tD

pt (ξt|m, θ, Ip)
λ

)δt
(1− P tD)1−δt

(248)

I Taking the logarithm of Pr{θ, Ip|Z} and discarding constant
terms, one gets

ln {Pr{θ, Ip|Z}} ∝ Λ(θ) =

NT∑
t=1

δt ln

(
P tD

pt (ξt|m, θ, Ip)
λ

)
+ (1− δt) ln(1− P tD)

(249)
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The Score Function

I The marginal change in the log-likelihood for assigning target t
to measurement i (i = 0 is false alarm) is

∆Λt,i =





ln

(
P tD

pt (zi|Ip)
λ

)
if i 6= 0

ln(1− P tD) if i = 0

(250)

I The previous information Ip is taken to be a set of
assignments of past measurements to targets.

I pt (ξt|m, θ, Ip) is the previously developed likelihood function.
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The Score Function

I Assuming a Gaussian prior, the marginal change in the
log-likelihood is

∆Λt,i =





ln


P tD

N
{

zi, ẑ
t
k|k−1,P

zz,i,t
k|k−1

}

λ


 if i 6= 0

ln(1− P tD) if i = 0

(251)

I ẑtk|k−1 is the predicted measurement from the tth target,
I Pzz,i,t

k|k−1 is the innovation covariance the for ith measurement
and tth target.

I The term ∆Λt,i is the marginal score function for single-frame
assignment.

I Summing the marginals for a full target-measurement
assignment, one forms the full score function Λ(θ) for a scan.
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The Score Function

I When using a converted measurement filter, the units of
N
{

zi, ẑ
t
k|k−1,P

zz,i,t
k|k−1

}
are in Cartesian coordinates, but the

units of λ are usually in the radar’s local coordinates.
I The proper conversion of λ to Cartesian coordinates yields a

different λ at every point.
I Cartesian λ is higher closer to the sensor.

I We want to derive what the Cartesian version of λ given λ in
the measurement coordinate system.
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The Score Function:
Converting λ

I Say x = fx(y).
I Volume integrals in each system are related by

∫

x∈Sx

dx =

∫

y∈Sy

|J(y)|dy (252)

where Sx and Sy are the same regions, but in different
coordinate systems and J is the Jacobian:

J(y) =

[
∂

∂y1
fx(y),

∂

∂y2
fx(y), . . . ,

∂

∂ydy
fx(y)

]
(253)
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The Score Function:
Converting λ

I Over a miniscule volume,

Vx = |J(y)|Vy (254)

I Thus, given λ in local (y) coordinates, the value in Cartesian
(x) coordinates is:

λx =
1

|J(y)|λy (255)

I In the TCL, the functions makeStandardLRMatHyps and
makeStandardCartOnlyLRMatHyps can compute all
marginal likelihood values, including conversion effects.

I In the TCL, necessary Jacobians are in “Coordinate
Systems/Jacobians/Converted Jacobians” and include
calcRuvConvJacob and calcPolarConvJacob, among others.

I For unconverted range rate components, the TCL has
functions including calcRuvRRConvJacob and
calcPolarRRConvJacob.
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GNN Assignment

I One could assign measurements to targets and false alarms by
choosing the assignment θ that maximizes the score function.

I How many valid assignments are there for m measurement and
NT targets?

Nhyp =

min(m,NT )∑

l=0︸ ︷︷ ︸
Sum over the number
of targets observed

Choose which targets
are observed︷ ︸︸ ︷(

NT

l

) (
m

l

)

︸ ︷︷ ︸
Choose which measurements

are not false alarms

Assign the measurements
to the targets︷︸︸︷

l! (256)

I Suppose there are 3000 measurements and targets, and no
false alarms or missed detections.

I There are 3000! ≈ 4.14× 109130 hypotheses.
I This is about one googol (10100) raised to 91.3.
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GNN Assignment

I The most power supercomputer (Tianhe-2, China) is 33.85
petaflops.

I A lower bound of execution time is one floating point
operation per hypothesis.

I It would take over 3.88× 109106 years to visit each hypothesis.
I However, one can optimally solve the assignment problem in

under 4 seconds (worst case) on an old laptop.
I In much of tracking, one cannot formulate an optimal solution

and tell a first semester programmer to make it fast using a
GPU or FPGA.

I Techniques from theoretic computer science are required for
computational feasibility.
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GNN Assignment

I There are 3000! ≈ 4.14× 109130 hypotheses, but only
30002 = 9× 106 marginal hypotheses (values of ∆Λt,i).

I The efficient solution is formulated as a GNN assignment (2D
assignment) problem:

x∗ = arg max
x

NR∑
i=1

NC∑
j=1

∆Λi,jxi,j (257)

subject to
NC∑
j=1

xi,j = 1 ∀i Every target is assigned
to an event.

(258)

NR∑
i=1

xi,j ≤ 1 ∀j Not every event is
assigned to a target.

(259)

xi,j ∈ {0, 1} ∀xi,j
Equivalent to
xi,j ≥ 0 ∀xi,j

(260)

I NR = NT and NC = NT +m, number of measurements plus
missed detection hypotheses.
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GNN Assignment

I Each target gets its own missed detection hypotheses; costs
for other targets’ hypotheses are −∞.

I To use the algorithm note that the cost matrix takes the form
Assignment

Costs︷ ︸︸ ︷
Missed Detection

Costs︷ ︸︸ ︷

Cl ,




∆Λ1,1 . . . ∆Λ1,m ∆Λ1,0 −∞ . . . −∞
∆Λ2,1 . . . ∆Λ2,m −∞ ∆Λ2,0 . . . −∞

...
. . .

...
...

...
. . .

...
∆ΛNT ,1 . . .∆ΛNT ,m −∞ −∞ . . .∆ΛNT ,0



.

(261)
I 2D assignment is a binary integer programming problem.
I Integer programming problems often cannot be solved in

polynomial time (NP-complete).
I The 2D assignment problem can be solved in polynomial time.

198 / 245



U.S.  Naval  Research  Laboratory

GNN Assignment

I Consider assignments of n targets to measurements without
false alarms and missed detections. The complexities of
popular algorithms are:

I The Munkres algorithm O(n4).
I The Jonker-Volgenant (JV) algorithm O(n3).
I The Auction Algorithm O(Cn3).

I Weakly polynomial. C can make it arbitrarily bad, or produce
suboptimal results.

I The ε-scaled Auction Algorithm O(n3).
I Not as fast as the JV algorithm.

I The auction algorithm is easy to understand.
I The auction algorithm appears in many textbooks.
I Do not use the auction algorithm.
I A modified JV algorithm is implemented as assign2D and

kBest2DAssign and is an option in singleScanUpdate in the
TCL.
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GNN Assignment

I The Jonker-Volgenant-Castañon (JVC) algorithm is popular in
the tracking literature.

I Castañon published a rectangular (possible missed detections)
JV modification.

I The JVC algorithm is popular because code is provided.
I The algorithm initializes a rectangular JV algorithm with an

auction algorithm.
I The ε term in the auction algorithm can cause the JV

algorithm to sometimes produce suboptimal results.
I The auction algorithm initialization is not necessary; don’t use

the JVC algorithm.

I A rectangular modification to the JV algorithm, is derived in
D. F. Crouse, “On Implementing 2D Rectangular Assignment Algorithms,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 52, no. 4, pp. 1679-1696, Aug. 2016.

I The derivation is lengthy, involves Lagrangian relaxation and
dual-primal optimization and is omitted here.
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The PDA and JPDA Algorithms

I The GNN algorithm is a maximum-likelihood approach.
I An alternative is to use the expected value over all possible

target-measurement assignments.
I For a single target, the expected value and the covariance of

the estimate are called probabilistic data association (PDA).
I For multiple targets, it is called Joint Probabilistic Data

Association (JPDA).
I Variants of the PDA and JPDA are implemented in

singleScanUpdate in the TCL.
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The PDA and JPDA Algorithms

I For the tth target, the JPDA update is

xtk|k = E
{
xtk |Z, Ip

}
=

m∑

i=0

βi,tx̂t,ik|k (262)

Pt
k|k = E

{(
xtk − x̂tk|k

)(
xtk − x̂tk|k

)′∣∣∣∣Z, Ip
}

(263)

=

m∑

i=0

βi,t
(

Pt,i
k|k +

(
xt,ik − x̂tk|k

)(
xt,ik − x̂tk|k

)′)
(264)

I βi,t is the probability of assigning measurement i to target t (0
is a missed detection).

I Superscripts of i and t indicate measurement and target
hypotheses.

I Ip is information on the (assumed Gaussian) prior estimates.
I The literature often uses a simpler expression for Pt

k|k that is
not quadratic in form and subject to finite precision errors.
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The PDA and JPDA Algorithms

I Assumptions going into the PDA/JPDA are that the prior
distributions on all targets are Gaussian.

I The covariance cross terms between targets are not zero, but
are omitted.

I JPDA variants including cross terms begin with a C for
coupled.

I Including the cross terms worsens the performance (worsens
track coalescence).

I The hardest part of the PDA/JPDA is the computation of the
β values.
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The PDA and JPDA Algorithms

I TIt was shown that the probability going into the score
function can be expanded:

Pr {θ, Ip|Z} =
1

c1
p(Z|m, θ, Ip) Pr {θ|m, Ip}Pr {Ip} (265)

I In the JPDA, we assume that the prior information is fixed
(Gaussian distributions, not multiple hypotheses). Thus,
Pr {Ip} = 1, so

Pr {θ, Ip|Z} =
1

c1
p(Z|m, θ, Ip) Pr {θ|m, Ip} (266)

= Pr {θ|Z, Ip} (267)

I This means that the previously derived Pr {θ, Ip|Z} can be
used to compute the β terms.
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The PDA and JPDA Algorithms

I The probabilities Pr {θ|Z, Ip} are called joint association event
probabilities.

I The target-measurement association probabilities are sums of
joint association event probabilities:

βi,t =
∑

θ:ξt(θ)=i

Pr {θ|Z, Ip} (268)

I These can only be computed exactly for small number of
targets in clusters.

I Approximations must be used if cluster sizes are too large.
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The PDA and JPDA Algorithms

t1

t2

t3

t4m1
m2

m3

m4

m6
m5

m7

m8

I Gating and clustering are important parts of a large-scale
JPDA implementation.

I In the above figure, measurements are said to gate with a
target if in the ellipse overlaps them.

I In practice, use a chi-squared test on the Mahalanobis distance.
I There are three clusters of targets and measurements.

1. Target t1 is in a cluster with m4.
2. Targets t2 and t3 (linked by m2) cluster with m1, m2, and m3.
3. Target t4 is in a cluster with m6.
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The PDA and JPDA Algorithms

I Targets are in a common cluster if they contest a
measurement.

I Measurements are associated with clusters.
I Separate clusters of targets/ measurements can be processed

by separate JPDAs.
I The β values for small clusters can be determined exactly.
I The β values of large clusters must be approximated.
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The PDA and JPDA Algorithms:
Gating and Clustering

I Brute-force gating and likelihood evaluation is implemented in
the TCL via the makeStandardLRMatHyps and
makeStandardCartOnlyLRMatHyps functions.

I Clustering can be computationally efficiently performed using
disjoint sets, an obscure Computer Science data structure.

I Disjoint sets for clustering are implemented in the
DisjointSetM and DisjointSet classes in the TCL; DisjointSet
keeps track of only targets in clusters; DisjointSetM keeps
track of targets and measurements in clusters.
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The PDA and JPDA Algorithms:
Gating and Clustering

Outputs

Inputs

Outputs

Inputs

P1 P2 . . . Pg

Perform Gating and Clustering

Initial Estimates
x̂t
k|k−1

,Pt
k|k−1

Observations
zi

Combine Cluster Estimates
x̂t
k|k,P

t
k|k

Processing Group Pg

Calculate
βi,t ∀(i, t) ∈ Gg

Calculate

x̂i,t
k|k,P

i,t
k|k ∀(i, t) ∈ Gg

Clustered Targets
x̂t
k|k−1

Pt
k|k−1

∀(t) ∈ Gg

Gated Observations
zi ∀(i) ∈ Gg

Calculate
x̂t
k|k,P

t
k|k ∀(i, t) ∈ Gg

I An illustration go how separate clusters can be processed
independently.

I Gg is the set of targets and measurements in the gth cluster.
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The PDA and JPDA Algorithms:
Computing β

I When the β terms must be computed exactly, two approaches
shall be considered:
1. Via brute-force evaluation of all joint association events.
2. Via matrix permanents.

I The matrix permanent approach is faster, but brute force is
necessary to derive some JPDAF variants.
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The PDA and JPDA Algorithms:
Computing β

I Brute-force evaluation adds all joint association events θ and
adds the (usually unnormalized) probabilities Pr {θ|Z, Ip} to
the appropriate βi,t terms.

I Normalization can be done afterwards. If β̃i,t are the
unnormalized association probabilities, then

βi,t =
β̃i,t∑m
j=1 β̃j,t

(269)

I The brute force method can be implemented as four nested
loops:
1. Choose how many targets are observed.
2. Choose which targets are observed.
3. Choose which measurements originated from targets.
4. Permute all associations of observed targets to

target-originated measurements.
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The PDA and JPDA Algorithms:
Computing β

I To compute the necessary combinations and permutations for
the brute-force method, many of the functions in the folder
“Mathematical Functions/Combinatorics” of the TCL can be
used. These include genNextCombo and
unrankCombination, and unrankPermutation, among many
others.

I The determinant of a square matrix is often taught as

|A| =
∑

σ∈Sn
sgn(σ)

n∏

i=1

ai,σi (270)

where Sn is the set of all permutations of the values 1 to n
and sign(σ) is the sign (a.k.a. signature or parity) of the
permutation.
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The PDA and JPDA Algorithms:
Computing β

I A permutation can be expressed as a series of swaps
(transpositions, inversions) of adjacent elements. The sign of
the permutation is related to the number of inversion as:

sgn(σ) = (−1)Ninversions (271)

I In the TCL, the function permutationCycles can compute the
sign of a permutation.

I The permanent of a square matrix is defined to be

perm (A) ,
∑

σ∈Sn

n∏

i=1

ai,σi (272)

with perm(∅) = 1.
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The PDA and JPDA Algorithms:
Computing β

I The permanent of a square matrix is the determinant without
the − signs.

I The permanent of a square matrix is the sum of the products
of all combinations selecting one element from each row and
column.

I The permanent of a rectangular m× n matrix with m ≤ n is
also defined as

perm (A) ,
∑

σ∈Pn,m

m∏

i=1

ai,σi (273)

where Pn,m is the set of all length m permutations of n items
(known as arrangements).

I The permanent of a rectangular m× n matrix with m ≤ n is
the sum of the product of all arrangements selecting one item
from each row and at most one item from each column.
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The PDA and JPDA Algorithms:
Computing β

I Consider a matrix of likelihoods with ∆Λ̃t,i = e∆Λt,i ,
non-normalized assignment probabilities:

C̃:
Assignment
Likelihoods︷ ︸︸ ︷

Missed Detection
Likelihoods︷ ︸︸ ︷

C ,




∆Λ̃1,1 . . . ∆Λ̃1,m ∆Λ̃1,0 0 . . . 0

∆Λ̃2,1 . . . ∆Λ̃2,m 0 ∆Λ̃2,0 . . . 0
...

. . .
...

...
...

. . .
...

∆Λ̃NT ,1 . . . ∆Λ̃NT ,m 0 0 . . . ∆Λ̃NT ,0




(274)
I The normalized expression for the β terms can be rewritten

directly in terms of likelihoods using elements of C:

βj,k = ∆Λ̃j,k

∑
σ∈PNT−1,NT−1+m

∏NT
n=1
n 6=j

cn,σn

∑
σ∈PNT ,NT+m

∏NT
n=1 cn,σn

(275)
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The PDA and JPDA Algorithms:
Computing β

I The expression simplifies to

βj,k = ∆Λ̃j,k
perm

(
C̄j,k

)

perm (C)
(276)

where C̄j,k is the matrix C after removing row j and column
k.

I The matrix determinant can be evaluated in polynomial time
using Gaussian elimination.

I The matrix permanent cannot be evaluated in polynomial time
unless P=NP.

I The relation between P and NP complexity classes is a major
unsolved problem in theoretical computer science.

I Efficient exponential complexity algorithms exist. In the TCL,
the function perm implements an efficient algorithm.

216 / 245



U.S.  Naval  Research  Laboratory

The PDA and JPDA Algorithms

I Functions to explicitly compute the β values are implemented
in the calc2DAssignmentProbs function in the TCL.

I Many techniques to approximate β values exist and are
implemented in calc2DAssignmentProbsApprox in the TCL.

I Methods to do the complete PDA and JPDA update are given
in singleScanUpdate in the TCL.

I However, one usually uses a variant of the JPDA algorithm
rather than the JPDA algorithm itself.
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The JPDA Algorithm:
Coalescence

I Consider two targets whose states consist only of scalar
position and have been stacked.

I Suppose that the joint PDF for the two targets is

p(x) =
1

2
δ

(
x−

[
1

−1

])
+

1

2
δ

(
x−

[
− 1

1

])
(277)

I One target is located at +1 and one target is located at −1,
but we do not know which.

I E {x} = 0, where no target is located.
I Identity uncertainty causes track coalescence!
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The JPDA Algorithm:
Coalescence
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The JPDAF

I Target identity is important, but we really want to know where
things are.

I The above plot is typical of targets remaining close for many
scans in the JPDA filter.
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The JPDA Algorithm:
Coalescence

(a) Prior to
Prediction

(b) After
Prediction

I Targets can be “too close” in the JPDAF even when well
resolved by the sensor.

I Closeness is related to predicted target uncertainty.
I Well-separated targets becomes “too close” if prediction

interval is too large.
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The JPDA Algorithm:
Coalescence

I Coalescence is not a “bias”.
I Coalescence is the result of using the expected value given

uncertain identity.
I The expected value is a minimum mean squared error (MMSE)

estimate.
I A form of the minimum mean optimal subpattern assignment

(MMOSPA) method:
I Avoids the coalescence of the expected value.
I Still has the same smoothing properties as the expected value

versus ML.
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The JPDA Algorithm:
Coalescence

I The most common form of the optimal subpattern assignment
metric used for tracking is

dOE(x̂,x) =
1

NT
min
a
‖x̂a − x‖2 (278)

I x̂ and x are vectors of the stacked state estimates and the true
state vectors for NT targets:

x̂ =
[(

x̂1
)′
,
(
x̂2
)′
, . . . ,

(
x̂NT

)′]′
(279)

x =
[(

x1
)′
,
(
x2
)′
, . . . ,

(
xNT

)′]′
(280)

I a is a permutation vector determining the order of the states
in the stacked vector:

a = [a1, a2, . . . , aNT ]
′ (281)

x̂a =

[
(x̂a1)

′
, (x̂a2)

′
, . . . ,

(
x̂aNT

)′]′
(282)

222 / 245



U.S.  Naval  Research  Laboratory

The JPDA Algorithm:
Coalescence

I MMOSPA estimation is essentially an expected value with
target identity removed.

I Typically, the ordering for the MMOSPA estimate is computed
only using position components of the state.

I The strict OSPA definition mixes unlike units (e.g. position
and velocity).

I The Set JPDAF is an approximate MMOSPA estimator.
I In the TCL, use calcSetJPDAUpdate to use the Set JPDAF.

It is also an option in singleScanUpdate.
I An approximate MMOSPA estimator is given in

MMOSPAApprox in the TCL.
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The JPDA Algorithm:
Coalescence

I In practice, the Set JPDAF is not used
I It discards too much identity information.
I It is slower than alternatives.

I Two common alternatives to resist coalescence are
1. The GNN-JPDA
2. The JPDA*
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The JPDA Algorithm:
Coalescence

I The GNN-JPDA is simple:
1. Determine the measurement to use with a GNN filter, giving

x̂k|k.
2. Compute Pk|k as in the JPDA, using the GNN estimate as the

mean x̂k|k.

I The hard assignment avoids coalescence.
I Computing Pk|k as a MSE matrix improves covariance

consistency/reduces track loss.
I Available as an option in singleScanUpdate in the TCL with

exact and approximate βs.
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The JPDA Algorithm:
Coalescence

I The brute-force computation of the βs had loops:
1. Choose how many targets are observed.
2. Choose which targets are observed.
3. Choose which measurements originated from targets.
4. Permute all associations of observed targets to

target-originated measurements.
I The JPDA* is the same as the JPDA except in the innermost

loop, only the maximum likelihood permutation is used.
I Has the smoothing of the expected value.
I The hard decision gets rid of identity uncertainty: Resistant to

coalescence.

I Use calcStarBetasBF for the βs in the TCL. Available as an
option in singleScanUpdate in the TCL.
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The JPDA Algorithm: Example
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10
4 True and Estimated Trajectories

I A 2D example of the JPDA* including gating and clustering is
given in demo2DDataAssociation in “Sample Code/Basic
Tracking Example" in the TCL.

I A sample run is shown above. Tracks were started from two
cued measurements.

I Estimated tracks: Red. True track: Dashed black. Detections:
Blue. Very resistant to false alarms.
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Cascaded Logic and Integrated
Trackers

I The GNN and JPDA algorithms only update established tracks.
I Most practical systems require the ability to start and

terminate tracks.
I Two main categories of algorithms exist for single-scan data

association approaches:
I Cascaded Logic Trackers

I Confirmed-tracks, pre-tracks and hard decisions for initiation
and termination.

I Integrated Trackers
I Lots of targets, each with a probability of existing.
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A Cascaded Logic Tracker

Predicted States, Scores
x̂t
k|k−1,P

t
k|k−1,Λ

t
k−1

Confirmed Tracks

Measurements
zi,Ri

Single Scan Update
e.g. JPDA

on Confirmed Tracks

Determine GNN
Assignment

on Confirmed Tracks

Terminate Confirmed
Tracks Failing
Page’s Test

Update
Cumulative Scores Λt

on Confirmed Tracks

Single Scan Update
e.g. JPDA

on Candidate Tracks

Predicted States, Scores
x̂t,p
k|k−1,P

t,p
k|k−1,Λ

t,p

Candidate Tracks

Determine GNN
Assignment

on Candidate Tracks

Promote or Terminate
Candidate Tracks Based

on the SPRT

Update
Cumulative Scores Λt

p

on Candidate Tracks

One-Point Initialization
and Initial Score

for New Candidate Tracks

Unassigned Measurements

Unassigned Measurements

Unassigned Measurements

I Multiple Types of
cascaded logic trackers
exist.

I There are confirmed
tracks and candidate
tracks.

I Sometimes
pre-tracks too.

I Scores usually updated
via GNN assignments.

I Measurements not in
GNN assignments go
on to the next stage.

I Creation, promotion
and deletion of tracks
in purple-outlined
boxes.
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A Cascaded Logic Tracker

I Measurements not assigned to confirmed tracks or candidate
tracks become new candidate tracks via single point
initialization.

I New candidate tracks assigned an initial track score Λtp.
I As candidate tracks are updated with measurements, the

likelihood increment ∆Λt of the GNN hypothesis for that track
is added to Λtp.

I A sequential probability ratio test (SPRT) determines whether
to declare the track confirmed or false.
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A Cascaded Logic Tracker: The
SPRT

I Let pm(Zm|θ) be the conditional PDF of a track given m
measurements in Zm under the hypothesis θ that the track
exists.

I pm(Zm|∅) be the conditional PDF of false alarms given m
measurements in Zm under the hypothesis that no track exists.

I A conditional probability ratio is

lm(Zm) =
pm(Zm|θ)
pm(Zm|∅)

(283)

I We choose two positive constants a and b such that at step
m:

I If a > lm(Zm) > b the test continue for another step.
I If a ≤ lm(Zm), it is declared there is a track.
I If b ≥ lm(Zm), it is declared there is no track.

I This test is the SPRT for likelihood ratios.
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A Cascaded Logic Tracker: The
SPRT

I The acceptance and rejection criteria can be rewritten:
I Declare no track if apm(Zm|∅) ≤ pm(Zm|θ)
I Declare a track if bpm(Zm|∅) ≥ pm(Zm|θ)

I Define the region of values of Zm where a track is declared as
L1.

I Define the region of values of Zm where a no track is declared
as L2.

I Integrating the acceptance criterion over L1. and the rejection
criterion over L2, one gets

b(1− α) ≥ β̃ (284)

1− β̃ ≥ aα (285)

where
I α is the probability of falsely declaring a target.
I β̃ is the probability of falsely declaring no target.

233 / 245



U.S.  Naval  Research  Laboratory

A Cascaded Logic Tracker: The
SPRT

I From the previous two equations, taking the inequalities as
equalities (which assumes the boundaries are not exceeded by
much), one gets

ln(a) = ln

(
1− β̃
α

)
(286)

ln(b) = ln

(
β

1− α

)
(287)

I When using the cumulative dimensionless score function Λtp, a
candidate tracks is rejected when Λtp ≤ ln(b) and accepted
when Λtp ≥ ln(a).

I The SPRT was extensively studied by Abraham Wald in the
1940s.

I Once accepted, a different test must be used to terminate a
confirmed track.
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A Cascaded Logic Tracker: The
SPRT

I If the SPRT were continued after confirmation, the cumulative
score would generally keep increasing.

I When a track ends, the score would need to come back down
to terminate if one tried to continue the SPRT.

I Page’s test is as follows:
I When confirmed, set the cumulative track score to a bound

value bp.
I If the cumulative track score ever exceeds bp, reset it to bp.
I If the cumulative track score ever dips below a lower bound ap,

then the track is terminated.

I The determination of ap can be difficult.
I A simple approximation is to reuse the bounds ln(a) and ln(b)

from the SPRT.
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An Integrated Tracker

Predicted States, Probabilities
x̂t
k|k−1,P

t
k|k−1, r

t
k|k−1

Confirmed Tracks

Single Point Initialization
on All (or Ungated)

Measurements; Set Initial r

Measurements
zi,Ri

Single Scan Update
e.g. JPDA

and Updating rtk|k

Terminate all Tracks
With rtk|k Too Small

I Integrated trackers maintain a probability of target existence with each
possible target.

I Usually, a track is not considered firm until its existence probability
exceeds a threshold.

I A track is not terminated until its existence probability goes below a
lower threshold.

I Measurement update implemented in the
singleScanUpdateWithExistence function in the TCL.
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An Integrated Tracker

I Unlike the standard JPDA, has r terms: target existence
probabilities.

I The algorithm names are the same as JPDA variants, but with
an I for integrated after the J.

I For example: JIPDA, GNN-JIPDA, JIPDA*, etc.

I Direct derivations of the JIPDA tend to be hard to follow.
I The Track-Oriented Marginal Multiple Target

Multi-Bernoulli-Poisson (TOMB/P) is essentially the same
filter with a different model for starting tracks.

I The TOMB/P uses a Poisson prior for the number of
undetected targets born each scan. The JIPDA does not. All
measurements are just assigned an initial probability of being a
track.

I The TOMB/P’s Poisson birth model is mathematically
appealing, but has no physical basis.
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An Integrated Tracker
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10
4 True and Estimated Trajectories

I The most straightforward
derivation of the JIPDA class of
filters uses finite set statistics.

I A proper coverage of finite set
statistics is beyond the scope of
this presentation.

I An example of a minimal end-to-end GNN-JIPDAF in 2D is
given in demo2DIntegratedDataAssociation in “Sample
Code/Basic Tracking Examples” in the TCL.

I A plot of a run of the sample code with the detections and
found tracks (green) and true tracks (red) is shown above for
the simple two-target scenario.
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Dealing with Beams

Rx Tx
t2

t3

t1

t2

I Most sensors are not omnidirectional.
I During a dwell, the score functions of targets not illuminated

or not in the viewing region should not change.
I Only target T1 could be expected to be observed by the

receiver above.
I A maximum time without detections should be a design

criterion to help terminate tracks that will not be revisited.
240 / 245



U.S.  Naval  Research  Laboratory

Dealing with Beams
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I If a target is determined to be in the transmit and receive
beams, then one will often adjust PD based on the predicted
positions in the beams and the beamshapes.

I This can be more difficult than one might expect. The
Swerling models in “Mathematical
Functions/Statistics/Detection Statistics/” in the TCL might
help.
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Summary I

I Gaussian approximations and Poisson clutter are widely used.
I Tracking algorithms need consistent measurement covariance

matrices. Cross terms between range and range rate can
matter.

I The Kalman filter comes from a Bayesian update of a linear
dynamic model and a linear measurement.

I The EKF and CKF use Taylor series and cubature
approximations to solve difficult integrals in an approximate
nonlinear Kalman filter.

I Approaches to measurement conversion with consistent
covariances include using Taylor series and cubature
approximations to solve difficult integrals.
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Summary II

I The GNN filter is a maximum likelihood filter for data
association.

I The JPDA is an MMSE (expected value) filter for data
association.

I One typically uses a variant of the JPDA, because the
expected value is undesirable given target identity uncertainty.

I Cascaded logic and integrated additions to GNN and JPDA
filter variants allow for track initiation and termination.

I Lots of free, commented Matlab code for tracking can be
found at https://github.com/USNavalResearchLaboratory/
TrackerComponentLibrary which is also
http://www.trackercomponentlibrary.com
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